首页|基于改进YOLOv7的轻量级地铁站台间隙异物检测算法

基于改进YOLOv7的轻量级地铁站台间隙异物检测算法

扫码查看
在客运高峰期,地铁站台屏蔽门与列车门间隙夹人夹物事故常有发生。针对现有的异物入侵检测算法参数量、计算量较大,难以部署在算力和内存资源均有限的边缘设备这一问题,提出了一种基于改进YOLOv7的轻量化算法模型YOLOv7-MobileNetv3。将YOLOv7的主干网络替换为MobileNetv3-Large网络,以在减小模型大小、降低参数量的同时提升检测速度。根据地铁站台环境搭建实验台,模拟异物入侵,并建立地铁站台异物入侵数据集,训练YOLOv7-MobileNetv3算法模型。实验结果表明,与原YOLOv7模型相比,改进模型的平均精度均值提高2。4百分点,检测速度提高13。32帧/s,模型参数量、计算量分别下降32。03%、60。79%。改进后模型在保证实时性、准确性的同时更为轻量化,可部署到硬件资源有限的边缘设备,用于地铁站台间隙异物检测。
Lightweight algorithm for subway platform gap foreign object detection based on improved YOLOv7
In the peak period of passenger transport,accidents evolving people or objects getting caught in the gap between the platform screen door and the train door often occur.To address the problem that existing foreign object intrusion detection algorithms have a large number of parameters and calculations,making them difficult to deploy on edge devices with limited computing power and memory resources,a lightweight algorithm model YOLOv7-MobileNetv3 based on improved YOLOv7 was proposed.The backbone network of YOLOv7 was replaced with the MobileNetv3-Large network,resulting in reduced model size,parameter count and improved inference speed.An experimental platform was built based on the subway platform environment,to simulate foreign object intrusion.A subway platform foreign object intrusion dataset was established to train the YOLOv7-MobileNetv3 model.The experimental results show that compared with the original YOLOv7 model,the mean average precision of the improved model is improved by 2.4 percentage points.The detection speed is increased by 13.32 frame/s,and model parameters and computational load are decreased by 32.03%,60.79%.The improved model is more lightweight while ensuring real-time and accuracy,and can be deployed on edge device with limited hardware resources for the detection of foreign objects in subway platforms gaps.

subway platform gapforeign object detectionlightweight networkYOLOv7depthwise separable convolution

杨清雯、黄民、王文胜、周恢

展开 >

北京信息科技大学机电工程学院,北京 100192

北京科技成果转化服务中心,北京 100009

清华大学工业工程系,北京 100084

地铁站台间隙 异物检测 轻量化网络 YOLOv7 深度可分离卷积

国家重点研发计划

2020YFB1713205

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(2)
  • 17