首页|基于稠密高分辨率并联网络的安检X光图像分割

基于稠密高分辨率并联网络的安检X光图像分割

扫码查看
针对安检X光图像检测中违禁物品尺度差异大、杂乱无章且存在重叠遮挡现象的技术难题,对高分辨率网络(high-resolution network,HRNet)模型进行改进,同时融合去遮挡单元,提出了一种新的多尺度特征融合网络结构,实现安检X光图像中的违禁物品语义分割。在编码阶段,基于HRNet的多分支并联网络结构,设计了一种单分支内稠密连接的方式,增强深、浅层的信息融合,提取多尺度特征,解决安检X光图像违禁物品尺度多样化的问题。在网络整体架构中,融入基于注意力机制的去遮挡单元,加强模型的边缘感知能力,有效抑制安检X光图像中物品重叠遮挡对分割精度的影响。在PIDray安检图像公开数据集的Easy、Hard、Hidden三个验证子集上验证了所提方法的有效性。结果表明:该模型分别取得了 74。69%、69。92%、56。77%的平均交并比,相比原始HRNet模型,分别提升了 2。03、1。62、4。13百分点,总体平均交并比提升约2。59百分点。
Security X-ray image segmentation based on dense high-resolution parallel networks
To tackle the technical challenges posed by the diverse scale,disorderly arrangement,and overlapping occlusion of prohibited items in X-ray image detection for security checks,by improving the high-resolution network(HRNet)model and incorporating a de-occlusion unit,a novel multi-scale feature fusion network structure was proposed for prohibited item semantic segmentation in security X-ray images.In the encoding stage,leveraging HRNet's multi-branch parallel network structure,a dense connection was introduced within a single branch to enhance the fusion of information from deep and shallow layers,extracting multi-scale features to address the diverse scale of prohibited items in security X-ray images.Within the overall network architecture,an attention-based de-occlusion unit was integrated to enhance the model's edge perception,effectively suppressing the impact of overlapping occlusion on segmentation accuracy in security X-ray images.Experimental validation on the PIDray security image dataset across Easy,Hard and Hidden validation subsets demonstrated the effectiveness of the proposed method.The results indicate mean intersection over union(MIoU)values of 74.69%,69.92%and 56.77%,respectively.Compared with the original HRNet model,this represents an improvement of 2.03,1.62 and 4.13 percentage points,achieving an overall MIoU enhancement by approximately 2.59 percentage points.

security X-ray imagessemantic segmentationprohibited item recognitiondense parallel networks

李广睿、刘琼

展开 >

北京信息科技大学自动化学院,北京 100192

安检X光图像 语义分割 违禁品识别 稠密并联网络

国家自然科学基金

62302051

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(2)
  • 17