首页|面向医学图像分割的CNN与Transformer混合模型

面向医学图像分割的CNN与Transformer混合模型

扫码查看
由于医学图像具有对比度低、目标形态复杂和边缘模糊等特点,现有模型的分割准确度无法满足高精度建模和自动化手术的要求。针对这一情况,结合卷积神经网络(convolutional neural networks,CNN)出色的局部特征提取能力和Transformer长距离建模的优势,提出了一种基于二者的混合架构分割模型ParaCNNFormer。ParaCNNFormer是一种U型结构分割模型,其编码器与解码器均采用CNN与Swin Transformer并联的混合架构,利用CNN提取局部细节特征,同时利用Swin Transformer建立长距离依赖,有效提高了分割准确度。在CHAOS和DSB18数据集上的对比实验结果表明,骰子系数相较于流行的TransUnet和SwinUnet均有明显提升。
A hybrid model of CNN and Transformer for medical image segmentation
Since medical images have the characteristics of low contrast,complex target shapes,and blurred edges,the segmentation accuracy of existing models cannot meet the requirements of high-precision modeling and automated surgery.In response,a hybrid architecture segmentation model called ParaCNNFormer was proposed,combining the excellent local feature extraction capabilities of convolutional neural networks(CNN)and the advantages of Transformer's long-distance modeling.As a U-shaped structure segmentation model,both the encoder and decoder of ParaCNNFormer adopted the hybrid architecture of CNN and Swin Transformer in parallel,which effectively improved the segmentation accuracy.CNN was used to extract local detailed features,and Swin Transformer was used to establish long-distance dependencies.The comparative experimental results on CHAOS and DSB18 datasets show that,the dice coefficient has been significantly improved compared with the popular TransUnet and SwinUnet.

medical image segmentationTransformerconvolutional neural networks(CNN)hybrid architecture

王茜、蔡英、范艳芳、王昀

展开 >

北京信息科技大学计算机学院,北京 100192

医学图像分割 Transformer 卷积神经网络 混合架构

北京市自然科学基金-海淀原始创新联合基金

L192023

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(2)
  • 18