首页|基于自注意力机制的中文金融事件元素抽取

基于自注意力机制的中文金融事件元素抽取

扫码查看
针对中文金融事件元素抽取任务中多个代词指代同一个元素的问题,提出了基于自注意力机制的事件元素抽取模型。该模型在预处理阶段融入金融事件领域知识与事件类型知识,使得预训练模型可以根据事件类型信息获得更可靠的事件元素表示;然后,使用多头注意力机制挖掘新闻上下文不同元素指代词的指代含义,做到重叠元素间的指代消解;最后,使用双向长短期记忆网络与条件随机场挖掘新闻长文本的上下文特征表示,实现事件元素抽取。构建了中文金融事件语料库,通过与主流模型的对比实验验证了该模型的有效性。
Chinese financial event element extraction based on self-attention mechanism
To solve the problem that multiple pronouns refer to the same element in the Chinese financial event element extraction task,an event element extraction model based on self-attention mechanism was proposed.The model integrated the domain knowledge of financial events and event type knowledge in the preprocessing stage so that the pre-training model could obtain more reliable event element representations according to the event type information.Then,the multi-head attention mechanism was used to mine the referential meanings of pronouns for different elements in the news context to achieve referential resolution between overlapping elements.Finally,the bidirectional long short-term memory network and the conditional random field were used to mine the contextual feature representation of the long text of news to realize the extraction of event elements.A Chinese financial event corpus was constructed,and the effectiveness of the model was verified through comparative experiments with mainstream models.

deep learningfinancial event extractioncorpus constructionevent element extraction

付安娜、刘旭红、齐林、崔展齐、于俊洋、刘秀磊

展开 >

北京信息科技大学数据科学与情报分析研究所,北京 100101

北京信息科技大学网络文化与数字传播北京市重点实验室,北京 100192

北京信息科技大学经济管理学院,北京 100192

北京信息科技大学计算机学院,北京 100101

河南大学软件学院,开封 475001

展开 >

深度学习 金融事件抽取 语料库构建 事件元素抽取

国家重点研发计划北京信息科技大学促进高校分类发展-重点研究培育项目河南省科技攻关计划河南省科技研发项目

2021YFB26006002121YJPY225212102310548212102210078

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(2)
  • 15