首页|基于比值分布的小样本滚动轴承概率寿命预测

基于比值分布的小样本滚动轴承概率寿命预测

扫码查看
针对大型复杂设备与特殊装置中的滚动轴承历史失效数据少、寿命数据离散化、工况环境因素具有不确定性等问题,提出了 一种基于小样本失效数据扩容的概率寿命预测模型。采用自助法(Bootstrap)扩充小样本失效数据,用极大似然估计法对扩容后的数据进行威布尔分布双参数估算。基于应力-强度干涉模型,通过蒙特卡洛抽样方法,建立双正态比值分布的概率可靠性算法模型,并根据实际工况进行疲劳寿命预测。在XJTU-SY轴承数据集上的拟合结果表明,概率寿命预测模型可以获得接近标准寿命的寿命预测曲线,均方误差为9。71%。
Probabilistic life prediction of small sample rolling bearing based on ratio distribution
To address the issues caused by limited historical failure data of rolling bearings,discretization of life data,and working environment factors with uncertainty in large complex equipment and special devices,a probabilistic life prediction model based on small sample failure data expanding was proposed.The failure data with small samples was expanded by the Bootstrap method and the dual parameters of the Weibull distribution for the expanded data were estimated by the maximum likelihood estimation(MLE)method.Based on stress-strength interference model,the algorithm for the probabilistic reliability of the bivariate normal ratio distribution was constructed using the Monte Carlo sampling technique,and the fatigue life was predicted by considering the actual working conditions.The fitting results on the XJTU-SY bearing dataset demonstrate that the probabilistic life prediction model can obtain a life prediction curve close to the standard life curve,with a mean square error of 9.71%.

rolling bearingfatigue lifeprobabilistic reliabilityMonte Carlo methodratio distribution

朱诸、米洁、王传朋、杨海杰、黄岿虎

展开 >

北京信息科技大学机电工程学院,北京 100192

中国船舶集团有限公司质量与可靠性中心,北京 100081

滚动轴承 疲劳寿命 概率可靠性 蒙特卡洛方法 比值分布

国防科工局技术基础项目

JSZL2020206B002

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(3)