首页|基于生成对抗网络的轻量化图像融合算法

基于生成对抗网络的轻量化图像融合算法

扫码查看
为解决常规图像融合算法因体积过大导致的复杂度高、存储空间需求较大、计算资源占用多、部署困难等问题,通过在目标感知双对抗学习(target-aware dual adversarial learning,TarDAL)网络中引入深度可分离卷积(depthwise separable convolution,DSConv)与卷积块注意力模块(convolutional block attention module,CBAM),提出了一种轻量化图像融合算法。将生成器结构中的传统卷积层分解为深度卷积和点卷积2个部分,形成深度可分离卷积,实现算法轻量化,降低计算成本与参数量。对源图像提取的特征使用CBAM混合注意力机制处理,使得网络在学习特征时更关注重要的通道与空间特征,提升融合图像的特征表达能力。在M3FD数据集上的测试结果表明,与原TarDAL算法相比,轻量化算法在主观评价方面更好地保留了细节与纹理,削弱了强光的干扰;在客观评价方面,图像评估指标变化小。轻量化算法生成的融合图像质量良好,模型参数量较原TarDAL算法下降了 86。24%。
Lightweight image fusion algorithm based on generative adversarial networks
To address the issues of high algorithm complexity,large storage space requirement,heavy computational resource consumption,and deployment difficulty associated with conventional image fusion algorithms due to their big size,a lightweight image fusion algorithm was proposed through the integration of depthwise separable convolution(DSConv)and the convolutional block attention module(CBAM)in the target-aware dual adversarial learning(TarDAL)network.The traditional convolution layers in the generator structure were decomposed into depthwise convolution and pointwise convolution,forming DSConv to achieve a lightweight algorithm and reduce computational cost and the number of parameters.The features extracted from the source images were processed by the CBAM mixed attention mechanism,which allowed the network to focus more on important channel and spatial features during feature learning,enhancing the expression ability of the fused image.Test results on the M3 FD dataset indicate that,compared with the original TarDAL algorithm,the lightweight algorithm better preserves details and texture in subjective evaluation,while reducing interference from strong light.For the objective evaluation,changes in image evaluation indicators are minor.The lightweight model can generate fused images with good quality,with a parameters reduction of 86.24%compared with the original TarDAL algorithm.

image fusiongenerative adversarial network(GAN)multimodal imagedepthwise separable convolution(DSConv)

徐一翔、吕勇

展开 >

北京信息科技大学仪器科学与光电工程学院,北京 100192

图像融合 生成对抗网络 多模态图像 深度可分离卷积

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(3)