首页|基于改进MobileNetV2的轻量化轴承故障诊断

基于改进MobileNetV2的轻量化轴承故障诊断

扫码查看
针对现有深度学习故障诊断模型普遍计算成本、时间成本和通信成本高,轻量化模型诊断精度低、抗噪能力弱,不适宜边缘环境部署的问题,提出了 一种基于连续小波变换和改进MobileNetV2的轻量化轴承故障诊断方法。通过连续小波变换将原始信号转变为时频图作为输入样本,结合高效通道注意力机制与MobileNetV2,在较低参数量与计算量的情况下,提升了模型的故障诊断精度与抗噪能力。基于凯斯西储大学轴承数据集的实验表明,该方法在2 dB信噪比下准确率可以达到98。27%,与其他模型相比,在轻量化的同时具有更好的故障诊断精度和抗噪性,更适用于边缘场景下的故障诊断。
Lightweight bearing fault diagnosis based on improved MobileNetV2
In response to the high computing cost,time cost and communication cost of existing deep learning fault diagnosis models,as well as the low diagnosis accuracy and weak anti-noise ability of lightweight models,which are unsuitable for deployment in edge environments,a lightweight bearing fault diagnosis method based on continuous wavelet transform(CWT)and improved MobileNetV2 was proposed.By converting the original signal into a time-frequency graph as an input sample by CWT,and combining the efficient channel attention(ECA)mechanism and MobileNetV2,the fault diagnosis accuracy and anti-noise ability of the model were improved,with low parameters and calculational load.Experimental results based on the bearing dataset of Case Western Reserve University show that,the proposed method can achieve an accuracy of 98.27%under a signal-to-noise ratio of 2 dB,which has better fault diagnosis accuracy and noise immunity while being lightweight compared with other models,and is more suitable for fault diagnosis in edge scenarios.

bearingcontinuous wavelet transform(CWT)MobileNetV2lightweight modelfault dignosis

万浩、黄民

展开 >

北京信息科技大学机电工程学院,北京 100192

轴承 连续小波变换 MobileNetV2 轻量化模型 故障诊断

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(4)