首页|潮流发电系统的无传感器自适应神经元控制策略

潮流发电系统的无传感器自适应神经元控制策略

扫码查看
在恶劣的海洋环境中,潮流发电系统的非线性、外部干扰和传感器故障等关键问题,使潮流发电机组难以准确运行于最大功率点处。为了提高潮流发电系统的能量转换效率和可靠性,提出了一种基于模型参考自适应系统(model reference adaptive system,MRAS)的自适应神经元控制(adaptive neural control,ANC)方法。考虑到湍流和浪涌扰动对潮流发电装置转子速度跟踪的影响,利用MRAS无传感器方法对ANC控制器的输入进行预处理,以准确获取潮流发电机组的转子速度信息;同时引入自调整灵敏度系数,设计神经元速度控制器自适应机制,提高系统的动态跟踪响应和抗干扰能力。仿真结果表明,所提控制策略可以提高潮流发电系统的功率捕获效率,具有良好的自适应性和可靠性。
Sensorless adaptive neural control strategy for tidal power generation system
In harsh marine environments,key issues such as nonlinearity,external disturbance,and sensor failures pose challenges for the accurate operation of tidal generating units at the maximum power point.In order to improve the energy conversion efficiency and reliability of the tidal power generation system,an adaptive neural control(ANC)scheme based on model reference adaptive system(MRAS)was proposed.Considering the effect of turbulent flow and swell disturbances on rotor speed tracking of tidal power generation devices,the input of the ANC controller was preprocessed by the MRAS sensorless method,to obtain the accurate rotor speed information of tidal power generation units.Meanwhile,a self-adjusting sensitivity coefficient was introduced in the design of the adaptive mechanism of the neural speed controller so as to improve the dynamic tracking response and anti-interference ability of the system.Simulation studies show that the proposed control strategy can improve the power capture efficiency of the tidal power generation system with fine adaptability and reliability.

tidal power generation systemadaptive neural control(ANC)sensorless controlpower capture efficiency

厉明珠、陈磊

展开 >

中国石油化工股份有限公司上海海洋油气分公司,上海 200120

潮流发电系统 自适应神经元控制 无传感器控制 功率捕获效率

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(5)