北京理工大学学报(英文版)2024,Vol.33Issue(1) :28-40.DOI:10.15918/j.jbit1004-0579.2023.143

WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm

Duo Peng Kun Xie Mingshuo Liu
北京理工大学学报(英文版)2024,Vol.33Issue(1) :28-40.DOI:10.15918/j.jbit1004-0579.2023.143

WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm

Duo Peng 1Kun Xie 1Mingshuo Liu1
扫码查看

作者信息

  • 1. School of Computer and Communication of Lanzhou University of Technology, Lanzhou Gansu 730050, China
  • 折叠

Abstract

A wireless sensor network mobile target tracking algorithm (ISO-EKF) based on improved snake optimization algorithm (ISO) is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking. First, the steps of extended Kalman filtering (EKF) are introduced. Second, the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target. Finally, the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model (CM). Under the specified conditions, the position and velocity mean square error curves are compared among the snake optimizer (SO)-EKF algorithm, EKF algorithm, and the proposed algorithm. The comparison shows that the proposed algorithm reduces the root mean square error of position by 52% and 41% compared to the SO-EKF algorithm and EKF algorithm, respectively.

Key words

wireless sensor network (WSN) target tracking/snake optimization algorithm/extended Kalman filter/maneuvering target

引用本文复制引用

基金项目

国家自然科学基金(62265010)

国家自然科学基金(62061024)

甘肃省科技计划(23YFGA0062)

Gansu Province Innovation Fund(2022A-215)

出版年

2024
北京理工大学学报(英文版)
北京理工大学

北京理工大学学报(英文版)

影响因子:0.168
ISSN:1004-0579
参考文献量30
段落导航相关论文