北京理工大学学报(英文版)2024,Vol.33Issue(5) :399-411.DOI:10.15918/j.jbit1004-0579.2024.058

Strabismus Detection Based on Uncertainty Estimation and Knowledge Distillation

Yibiao Rong Ziyin Yang Ce Zheng Zhun Fan
北京理工大学学报(英文版)2024,Vol.33Issue(5) :399-411.DOI:10.15918/j.jbit1004-0579.2024.058

Strabismus Detection Based on Uncertainty Estimation and Knowledge Distillation

Yibiao Rong 1Ziyin Yang 1Ce Zheng 2Zhun Fan3
扫码查看

作者信息

  • 1. College of Engineering,Shantou University,Shantou 515063,China
  • 2. Department of Ophthalmology,Xinhua Hospital,Affiliated to Shanghai Jiaotong University School of Medicine,Shanghai 200092,China
  • 3. Shenzhen Institute for Advanced Study,University of Electronic Science and Technology of China,Shenzhen 518017,China
  • 折叠

Abstract

Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6 807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model's performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions.

Key words

knowledge distillation/strabismus detection/uncertainty estimation

引用本文复制引用

出版年

2024
北京理工大学学报(英文版)
北京理工大学

北京理工大学学报(英文版)

影响因子:0.168
ISSN:1004-0579
段落导航相关论文