首页|基于Mask R-CNN和迁移学习的无人机遥感影像杉木单木树冠提取

基于Mask R-CNN和迁移学习的无人机遥感影像杉木单木树冠提取

扫码查看
[目的]利用无人机遥感影像对树冠进行自动化提取,获取高精度树冠信息。[方法]该研究提出一种基于Mask R-CNN和迁移学习的无人机影像单木树冠提取方法。首先,选用在Faster R-CNN基础上改进优化的Mask R-CNN实例分割模型,特征提取网络在ResNet50残差网络和ResNet101 残差网络二者间选取最优。其次,引入迁移学习与Mask R-CNN一起训练,联合迁移学习的导向作用降低训练时间,提高训练精度。[结果]Mask R-CNN模型的总体精度为93。59%,用户精度为 65。46%,F1分数为 76。05%,平均精度均值为 0。31;载入迁移学习后的Mask R-CNN模型在同等训练条件下比原模型的用户精度提升 29。53%,F1 分数提升 19。63%,平均精度均值提升 0。21;分别以 ResNet50 和ResNet101为特征提取网络的Mask R-CNN模型中,ResNet50 + Mask R-CNN模型的总体精度、用户精度、F1 分数、平均精度均值各为 96。94%、95。57%、96。17%、0。54,ResNet101 + Mask R-CNN模型的总体精度、用户精度、F1 分数、平均精度均值各为 96。20%、94。41%、95。19%、0。49;其中载入迁移学习的ResNet50 + Mask R-CNN模型在预测东西冠幅、南北冠幅、树冠面积与样方郁闭度的预测决定系数分别为 0。87、0。84、0。93 和 0。83。[结论]本研究提出的基于Mask R-CNN和迁移学习的方法得到了较为精准的树冠参数结果,为无人机遥感影像评估树木资源提供了一种快速高效的解决方案。
UAV remote sensing image extraction of single tree crown of Chinese fir based on Mask R-CNN and transfer learning
[Objective]The UAV image automatically extracts canopy for precise information.[Method]In this study,single tree crown extraction method from UAV images based on Mask R-CNN and transfer learning was proposed.Firstly,the optimized Mask R-CNN instance segmentation model based on faster R-CNN was selected,and the optimal feature extraction network was chosen between ResNet50 and ResNet101.Secondly,transfer learning was introduced to train with Mask R-CNN together,combined with the guiding role of transfer learning to reduce training time and improve training accuracy.[Result]The results showed that the overall accuracy of the Mask R-CNN model was 93.59%,the user accuracy,F1 score and mean average precision were 65.46%,76.05%and 0.31,respectively.After adding transfer learning,the user accuracy of Mask R-CNN model was increased by 29.53%,the F1 score was increased by 19.63%,and the average accuracy was increased by 0.21.In the Mask R-CNN model with ResNet50 and ResNet101 as feature extraction networks,the average values of overall accuracy,user accuracy,F1 score and mean average precision of the ResNet50 + Mask R-CNN model were 96.94%,95.57%,96.17%and 0.54,respectively.The average values of overall accuracy,user accuracy,F1 score and mean average precision of the ResNet101 + Mask R-CNN model were 96.20%,94.41%,95.19%and 0.49,respectively.The R2of ResNet50 + Mask R-CNN model loaded with transfer learning in predicting east-west crown width,north-south crown width,crown area and quadrat canopy density were 0.87,0.84,0.93 and 0.83,respectively.[Conclusion]The method based on Mask R-CNN and transfer learning proposed in this study obtains more accurate results of tree crown parameters,which provides a fast and efficient solution for tree resource assessment in UAV images.

UAVremote sensing imagedeep learningMask R-CNNtransfer learningcrown extraction

谢运鸿、孙钊、丁志丹、罗蜜、李芸、孙玉军

展开 >

北京林业大学森林资源和环境管理国家林业和草原局重点实验室,北京 100083

无人机 遥感影像 深度学习 Mask R-CNN 迁移学习 树冠提取

国家自然科学基金林业公益性行业科研专项

31870620[2019]06

2024

北京林业大学学报
北京林业大学

北京林业大学学报

CSTPCD北大核心
影响因子:1.237
ISSN:1000-1522
年,卷(期):2024.46(3)
  • 33