首页|基于深度神经网络的年龄预测模型的构建和评价

基于深度神经网络的年龄预测模型的构建和评价

扫码查看
目的 利用GEO数据库筛选年龄相关的差异基因,构建和评价基于深度神经网络(DNN)的年龄预测模型.方法 收集GEO数据库583例正常人的转录组数据,利用R语言的"limma"软件进行差异表达分析,进一步通过Lasso回归筛选年龄相关特征基因.构建深度神经网络模型,训练集数据优化模型后,采用测试集数据对模型进行评价.结果 共筛选出156个年龄相关特征基因,采用15个年龄相关特征基因构建的DNN年龄预测模型效果最佳,其最大误差、中位数误差和均方根误差分别为11岁、4岁和6岁.与弹性网络回归算法(ENR)、随机森林算法(RF)、随机梯度下降算法(SGD)和支持向量回归算法(SVR)相比,基于DNN的年龄预测模型误差最小,精度最高.15个年龄相关特征基因在HUVEC衰老细胞中的表达量也发生显著变化.结论 本研究构建的基于DNN的年龄预测模型可准确和特异地预测年龄,在衰老相关疾病的发生机制、治疗和预后方面发挥重要作用.
The Construction and Evaluation of an Age Prediction Model Using Deep Neural Network Technique
Objective To screen age-related differentially expressed genes (DEG)of healthy cases in GEO database,and to construct and evaluate an age prediction model based on the deep neural networks (DNN). Methods We collected the transcriptome data of 583 healthy cases from GEO database.We screened DEG by using the"limma"package in the R software and further identified aging-related characterized genes by Lasso regression analysis.Construction and evaluation of the DNN model in the test dataset were then performed after model being optimized in the training dataset.Results A total of 243 DEG were confirmed. The age prediction model based on DNN by using 15 aging-related characterized genes showed the best prediction results with the maximum error of 11 years,the median error of 4 years,and the root mean square error of 6 years.Compared with ENR,RF,SGD,and SVR models,our model based on DNN showed the minimal error and the best precision.The 15 aging-related characterized genes were also confirmed in the aging HUVEC cell.Conclusion DNN model developed in this study can accurately and specifically predict age of healthy cases,which can play an important role in mechanism studies,also treatment,and prognosis in aging-related diseases.

Deep neural networkAgePrediction model

吴佳慧、崔雨萌、魏子岚、徐婕、王友亮、陈水平

展开 >

解放军医学院,北京 100853

中国人民解放军总医院第五医学中心检验科,北京 100039

军事医学研究院生物工程研究所,北京 100071

安徽医科大学解放军307 临床学院,合肥 230032

展开 >

深度神经网络 年龄 预测模型

国家重点研发计划主动健康和人口老龄化科技应对重点专项

2022YFC3600100

2024

标记免疫分析与临床
中国同辐股份有限公司

标记免疫分析与临床

CSTPCD
影响因子:0.978
ISSN:1006-1703
年,卷(期):2024.31(3)
  • 28