首页|基于改进ResNet-50的类别不平衡蚕茧图像分类算法

基于改进ResNet-50的类别不平衡蚕茧图像分类算法

扫码查看
在蚕茧制丝工艺流程中,缫丝前需将蚕茧按照缫丝工艺要求,逐一进行选茧分类工作.针对蚕茧图像数据存在类内差异大、类间差异小以及类别不平衡问题,文中提出一种基于改进ResNet-50的类别不平衡蚕茧图像分类算法.该算法在ResNet-50特征提取网络基础上,从特征图中得到注意力图,之后划分区域,将注意力强度最大区域的特征值减半,以抑制最显著区域特征;提取最显著区域特征并进行特征融合,以增加疵点注意力分布及提高网络表征能力;引入解耦表示学习和分类器学习进行训练,使用类平衡采样微调分类器,引入低频类参数优化损失,以在参数空间进一步调整分类器决策边界.结果表明,该算法在蚕茧图像测试集上分类准确率达96.203%,加权F1分数达96.196%,相较于ResNet-50分类算法分别提升1.243个百分点和1.279个百分点;改进算法对中低频类别蚕茧图像分类准确率提升达0.77~9.32个百分点.将该算法应用到蚕茧分选系统的视觉模块中可有效提升蚕茧分选效率.
Classification Algorithm of Class Imbalance Cocoon Images Based on Improved ResNet-50
In the process of silk reeling, the cocoons should be selected and classified one by one according to the re-quirements of reeling process before reeling.Aiming at the problems of large intra-class differences, small inter-class differences and class imbalance in cocoon image data, this paper proposes a classification algorithm of class imbalance cocoon images based on improved ResNet-50.Based on the ResNet-50 feature extraction network, this algorithm ob-tained the attention map from the feature map and divided it into regions.The feature value of the region with the largest attention intensity was halved to suppress the features of the most significant region.The most significant region feature was then extracted for feature fusion, so as to increase the defect attention distribution and improve the ability of network representation.The decoupling representation learning and classifier learning were introduced for training.The class bal-anced sampling was used to fine tune the classifier, and low-frequency class parameter optimization loss was introduced to further adjust the classifier decision boundary in the parameter space.The results showed that the classification accuracy of the algorithm on the test set of cocoon images reached 96.203%, and the weigh-ted-F1 score reached 96.196%, which was 1.243 per-centage points and 1.279 percentage points higher than that of the ResNet-50 classification algorithm.The impro-ved algorithm promoted the classification accuracy of silkworm cocoon images in low and medium frequency categories by 0.77 to 9.32 percentage points.The application of the algorithm to the vision module of the cocoon sorting system can effectively improve the efficiency of cocoon sorting.

Cocoon imageCocoon defectFeature fusionCocoon sorting

吴勇、李子印、汪小东、叶飞、金君

展开 >

中国计量大学光学与电子科技学院,杭州 310018

湖州市质量技术监督检测研究院(湖州市纤维质量监测中心),浙江 湖州 313099

蚕茧图像 蚕茧疵点 特征融合 蚕茧分选

国家市场监督管理总局科技计划项目浙江省基础公益研究计划项目浙江省市场监督管理局青年科技项目湖州市科技计划项目

2022MK048LGN20F50001QN20234462021GZ38

2024

蚕业科学
中国蚕学会 中国农业科学院蚕业研究所

蚕业科学

CSTPCD北大核心
影响因子:0.58
ISSN:0257-4799
年,卷(期):2024.50(2)
  • 7