首页|基于灰狼-粒子群算法的柴发机组节油优化

基于灰狼-粒子群算法的柴发机组节油优化

扫码查看
以变速柴油发电机组油耗率最低为优化目标,以指示热效率神经网络模型的柴油机平均值模型为燃油消耗率的计算基础,将柴油机转速上下限和功率限制线作为变速范围限制条件,对变速柴油发电机组在不同负荷工况下的节油转速进行优化.提出一种粒子群算法与灰狼算法相结合的混合算法,并用标准函数验证该算法的优势,表明其具有较均衡的全局和局部优化特性,更适合进行最低油耗率优化.优化计算结果表明:用电负荷越低,节油效果越明显;10%负荷时节油率可达30%以上,综合工况下节油率可达11.9%;采用该混合算法优化的转速能有效降低变速柴油发电机组的油耗率.
Fuel Saving Optimization for Diesel Generator Set Based on Grey Wolf-Particle Swarm Algorithm
Aiming at minimize fuel consumption,utilizing a neural network model of the diesel engine's indicated thermal efficiency as the basis for fuel consumption rate calculation.The optimization problem is formulated to determine the optimal speed for fuel economy under various load conditions,considering the upper and lower limits of engine speed and power constraints.A hybrid algorithm,combining particle swarm optimization and grey wolf optimization(GWPSO),is proposed,demonstrating its superiority through benchmark functions.The GWPSO algorithm exhibits balanced global and local optimization characteristics,making it more suitable for minimizing fuel consumption rates.Optimization results indicate that lower electrical loads result in more significant fuel savings,with a fuel savings rate exceeding 30%at 10%load and an overall fuel savings rate of 11.9%under comprehensive conditions.Optimizing the speed effectively reduces the fuel consumption rate of the variable-speed diesel generator set.

grey wolf-particle swarm optimizationvariable speed diesel generator setfuel saving optimization

张怀亮、丁峰、杨恒瑞

展开 >

海装装备项目管理中心,北京 100071

上海船舶设备研究所,上海 200031

灰狼-粒子群算法 变速柴发机组 节油优化

2024

船舶工程
中国造船工程学会

船舶工程

CSTPCD北大核心
影响因子:0.406
ISSN:1000-6982
年,卷(期):2024.46(6)
  • 5