首页|基于TCN-BLSTM-TPA模型的不规则波中船舶运动预报

基于TCN-BLSTM-TPA模型的不规则波中船舶运动预报

扫码查看
为了提高不规则波浪中船舶运动预报精度,将时序卷积神经网络和注意力机制双向长短期记忆神经网络相结合,建立能够挖掘时序特征并聚焦局部信息的网络结构,用于预报不规则波浪中船舶运动,并提出一种自适应粒子群优化算法用于神经网络超参数优化.以5级海况下船舶在横浪中的横摇运动和迎浪中的垂荡和纵摇为测试算例,验证该模型的有效性.研究结果表明:改进的粒子群算法增强了模型对不同提前预报时长的适应性,有效提高了模型的预报精度;在提前预报时长达到15 s时,相较于注意力机制双向长短期记忆神经网络模型,所提出模型在船舶横摇、垂荡和纵摇运动预报精度上至少提升了 29%、31%和44%.该研究成果可为船舶在不规则波浪中运动短期预报提供参考.
Ship Motion Prediction in Irregular Waves Based on TCN-BLSTM-TPA Model
In order to improve the prediction accuracy of ship motion in irregular waves,a network structure that can extract time series features and focus on local information is established by combining the temporal convolutional neural network and the time pattern attention based bidirectional long short-term memory neural network to predict ship motion in irregular waves.An adaptive particle swarm optimization algorithm is proposed to optimize the hyper-parameters of neural network.The ship's roll motion in beam waves and heave and pitch motions in head waves at sea state 5 are selected as the test cases.The effectiveness of the proposed model is verified.It is found that the improved particle swarm optimization enhances the adaptability of the model to different advance prediction times and effectively improves the prediction accuracy.When the advance time reaches 15 seconds,compared to the attention mechanism bidirectional short-term memory neural network model,the proposed model improves the prediction accuracy for ship's roll,heave and pitch by at least 29%,31%and 44%,respectively.The research results can provide a certain reference for short-term prediction of ship motion in irregular waves.

ship motionirregular wavetemporal convolutional neural networklong short-term memory neural networkparticle swarm optimization

薛建胜、高志亮

展开 >

武汉理工大学船海与能源动力工程学院,武汉 430063

船舶运动 不规则波浪 时序卷积网络 长短期记忆神经网络 粒子群算法

国家自然科学基金项目

52071242

2024

船舶工程
中国造船工程学会

船舶工程

CSTPCD北大核心
影响因子:0.406
ISSN:1000-6982
年,卷(期):2024.46(7)