首页|基于卷积神经网络的声呐图像水下目标检测综述

基于卷积神经网络的声呐图像水下目标检测综述

扫码查看
声呐探测技术作为水下探测的主要手段之一,在海洋环境中具有广泛的应用,随着卷积神经网络(CNN)在计算机视觉领域表现出卓越的性能,该技术越来越受到研究人员的重视.文章综述了卷积神经网络在声呐图像水下目标检测中的应用与发展,重点讨论基于CNN的典型水下目标检测方法,包括基于候选区域与回归的检测算法在声呐图像上的改进与应用,并分析各类网络模型在处理声呐图像特有问题上的创新策略,如小样本检测、小目标检测及CNN与传统算法融合等.最后总结了当前基于CNN的水下目标检测面临的挑战,并预测该领域技术发展趋势.
Review of Underwater Target Detection in Sonar Images Based on Convolutional Neural Network
As one of the primary means for underwater detection,sonar technology is widely used in marine environments.With the outstanding performance of Convolutional Neural Networks(CNN)in computer vision,this technology has garnered increasing attention from researchers.An overview of the application and development of CNN in sonar image-based underwater target detection is provided,with emphasis on the discussion of typical CNN-based underwater target detection methods.This includes advances and applications of region-based and regression-based detection algorithms tailored to sonar images.Additionally,innovative strategies employed by various network models to address the unique challenges posed by sonar images such as detection with small sample sizes,detection of small targets,and integration of CNN with traditional algorithms,are analyzed.Finally,the current challenges in CNN-based underwater target detection and forecasts the technological trends in this field are summarized.

convolutional neural network(CNN)sonar imageunderwater target detectiondeep learning

李新宇、张家利、孙玉山、万刚、张晗

展开 >

哈尔滨工程大学,智能海洋航行器技术全国重点实验室,哈尔滨 150001

哈尔滨工程大学,船舶工程学院,哈尔滨 150001

中国长江电力股份有限公司,湖北宜昌 443000

中国长江电力股份有限公司,湖北宜昌443000

哈尔滨工程大学,南安普顿海洋工程联合学院,哈尔滨 150001

展开 >

卷积神经网络 声呐图像 水下目标检测 深度学习

黑龙江省自然基金重点项目陕西省级水利科技计划项目国家重点研发计划项目陕西省引汉济渭工程建设有限公司科技项目

ZD2020E0052020slkj-52022YFB4703400SPS-D-15

2024

船舶工程
中国造船工程学会

船舶工程

CSTPCD北大核心
影响因子:0.406
ISSN:1000-6982
年,卷(期):2024.46(9)
  • 7