首页|基于特征多项式与改进鲸鱼算法的电池SOH预测

基于特征多项式与改进鲸鱼算法的电池SOH预测

扫码查看
锂电池作为新能源船舶系统的核心设备,对其健康状态(SOH)进行准确预测有利于系统能量管理和船舶安全运行.为提高电池SOH的预测精度,提出一种多健康特征(MHF)融合和改进鲸鱼优化算法(IWOA)相结合的预测方法.在传统支持向量回归作为预测方法的基础上,通过皮尔逊分析法选取4个典型健康特征(HF),采用加权方法构建融合多个HF的多项式模型.考虑到特征的权值系数和SVR的惩罚系数C、核参数δ以及最大误差ε的取值对预测精度的影响,使用IWOA对模型中的权值系数以及3个超参数进行联合寻优.仿真结果表明,所提出的MHF-IWOA-SVR方法具有更高的预测精度与拟合度,预测误差基本保持在±0.5%以内.
Battery SOH Prediction Based on Features Polynomial and Improved Whale Algorithm
Lithium battery is the core equipment of new energy ship system,and accurate prediction of its state of health(SOH)is conducive to system energy management and safe operation of the ship.In order to improve the prediction accuracy of battery SOH,a prediction method combining multiple health features(MHF)fusion and improved whale optimization algorithm(IWOA)is proposed.Based on the traditional support vector regression(SVR)as the prediction method,four typical health features(HF)are selected by the Pearson analysis method,and a polynomial model is constructed by using the weighted method to fuse multiple HF.Considering the influence of the weight coefficient of the feature and the penalty coefficient C of SVR,the kernel parameter δ and the maximum error ε on the prediction accuracy,the IWOA is used to jointly optimize the weight coefficient and three hyperparameters in the model.The simulation results show that the proposed MHF-IWOA-SVR method has higher prediction accuracy and better fit,and the prediction error is basically kept within±0.5%.

health features(HF)support vector regressionimproved whale optimization algorithm(IWOA)state of health(SOH)

闫羲、赖强、戴晓强、李奇、鄢然

展开 >

江苏科技大学自动化学院,江苏镇江 212100

上海船舶设备研究所,上海 200031

沪东重机有限公司,江苏镇江 212000

健康特征(HF) 支持向量回归 改进鲸鱼优化算法(IWOA) 健康状态(SOH)

2024

船舶工程
中国造船工程学会

船舶工程

CSTPCD北大核心
影响因子:0.406
ISSN:1000-6982
年,卷(期):2024.46(11)