首页|基于L1/2正则化的抛物线Radon变换多次波压制方法

基于L1/2正则化的抛物线Radon变换多次波压制方法

扫码查看
在地震数据处理中,多次波的存在会对地震数据成像和地震资料解释带来影响,如何有效地压制多次波干扰是地震勘探中的重要问题.抛物线Radon变换因其高效的特点被广泛应用于多次波压制中,但在野外地震数据采集时,炮检距的有限性会导致变换域中的能量扩散,产生假象,使多次波压制达不到理想的效果.针对此问题,提出一种基于L1/2正则化的稀疏反演高分辨抛物线Radon变换,并应用广义迭代收缩算法(generalized iterated shrinkage algorithm,GISA)进行求解.研究结果表明,L1/2正则化有很强的稀疏约束能力,能提高解的稀疏度,改进信噪分离的效果.与最小二乘反演和基于L1正则化的稀疏反演相比,基于L1/2正则化的稀疏反演高分辨抛物线Radon变换能更有效地压制多次波,并确保了重构数据与原始数据的一致性.
Multiple Suppression Method of Parabolic Radon Transform Based on L1/2 Regularization
In the context of seismic data processing,the presence of multiples poses inherent challenges to the imaging and interpretation of seismic data.The effective suppression of these multiples stands as a key issue in seismic exploration.Leveraging its high efficiency,the parabolic Radon transform emerges as a widely used technique for multiple suppression.However,in field seismic data acqisition,due to the limited offset,energy diffusion and illusions reduce the effect of multiple suppression in the Radon domain.In response to this challenge,we propose a L1/2-regularized high-resolution parabolic Radon transform with sparse inversion,where the inverse problem is solved by generalized iterated shrinkage algorithm(GISA).The L1/2regularization chosen for its robust sparse constraint capabilities plays an important role in enhancing the solution sparsity and improving the signal-noise separation.Compared with the least square inversion and the sparse inversion method based on L1 regularization,the L1/2-regularized sparse inversion of using the high-resolution parabolic Radon transform can suppress multiples effectively and ensure the consistency between the reconstructed data and the original data.

multiple suppressionhigh-resolution parabolic Radon transformL1/2 regularization

吴秋莹、胡斌、刘财、高锐

展开 >

吉林大学地球探测科学与技术学院,长春 130026

中山大学地球科学与工程学院,广州 510275

中国地质科学院地质研究所自然资源部深地动力学重点实验室,北京 100037

多次波压制 高分辨率抛物线Radon变换 L1/2正则化

国家自然科学基金项目

41874125

2024

吉林大学学报(地球科学版)
吉林大学

吉林大学学报(地球科学版)

CSTPCD北大核心
影响因子:1.062
ISSN:1671-5888
年,卷(期):2024.54(1)
  • 11