首页|NHNet——新型层次化遥感图像语义分割网络

NHNet——新型层次化遥感图像语义分割网络

扫码查看
深度学习分割方法是遥感图像分割领域的热点之一,主流的深度学习方法有卷积神经网络、transformer神经网络及两者的结合.特征提取是图像分割的重要环节,除了用卷积等方式提取特征,最近的研究聚焦于一些新的特征提取范式,如图卷积、小波变换等.本文利用聚类算法的区域构建属性,将改进的聚类算法用于骨干特征提取模块,同时使用卷积和视觉transformer作为辅助模块,以获取更丰富的特征表述;在模块基础上,提出了一种新型层次化遥感图像语义分割网络(NHNet);评估了 NHNet语义分割的性能,并在LoveDA遥感数据集上与其他方法进行比较.结果表明,基于多特征提取的NHNet获得了竞争性的性能表现,平均交并比为49.64%,F1分数为65.7%.同时,消融实验证明辅助模块提高了聚类算法分割的精确性,给NHNet分别提升了 1.03%和2.41%的平均交并比.
NHNet:A Novel Hierarchical Semantic Segmentation Network for Remote Sensing Images
Deep learning segmentation method is one of the hot topics in the field of remote sensing image segmentation.The mainstream deep learning methods include convolutional neural networks,transformer neural networks,and a combination of the two.Feature extraction is an important part of image segmentation.In addition to using convolution and other methods to extract features,recent research has focused on some new feature extraction paradigms,such as graph convolution and wavelet transform.In this article,the region construction attribute of clustering algorithms is utilized,and the improved clustering algorithm is used as the backbone feature extraction module while the convolution and visual transformer are used as auxiliary modules to obtain richer feature representations.On the basis of the module,a new hierarchical remote sensing image semantic segmentation network(NHNet)is proposed.The performance of NHNet semantic segmentation is evaluated and compared with other methods on the LoveDA remote sensing dataset.The results show that NHNet based on multi-feature extraction achieved competitive performance,with an average intersection-to-union ratio of 49.64%and a score of 65.7%.At the same time,ablation experiments show that the auxiliary module improves the accuracy of clustering algorithm segmentation,increasing the average intersection-to-union ratio of NHNet by 1.03%and 2.41%,respectively.

remote sensing imagessemantic segmentationclustering algorithmconvolutional neural networkself attention

王威、熊艺舟、王新

展开 >

长沙理工大学计算机与通信工程学院,长沙 410000

遥感图像 语义分割 聚类算法 卷积神经网络 自注意力

湖南省重点研究开发项目湖南省自然科学基金项目

2020SK21342022JJ30625

2024

吉林大学学报(地球科学版)
吉林大学

吉林大学学报(地球科学版)

CSTPCD北大核心
影响因子:1.062
ISSN:1671-5888
年,卷(期):2024.54(5)