首页|Heisenberg群中带奇异权的最优临界Hardy-Trudinger-Moser 不等式

Heisenberg群中带奇异权的最优临界Hardy-Trudinger-Moser 不等式

扫码查看
本文建立了 Heisenberg群中有界域和一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.克服临界Hardy不等式和奇异权函数带来的困难,利用带奇异权的Trudinger-Moser不等式和一些基本估计建立了有界域上一般的带奇异权的临界Hardy-Trudinger-Moser不等式,并通过选取适当的Moser函数得到了最佳常数.最后,利用分割积分区域的方法得到了一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.
The sharp singular critical Hardy-Trudinger-Moser inequality of Heisenberg group
In this paper,we establish a sharp form of singular critical Hardy-Trudinger-Moser in-equality in bounded and unbounded domain of Heisenberg group.We overcome the difficulties caused by critical Hardy inequalities and singular weighted functions,and then establish the singular critical Hardy-Trudinger-Moser inequality in bounded domain based on singular Trudinger-Moser inequality and some basic estimates.The best constants are obtained by choosing proper Moser functions.Finally,we prove sharp singular critical Hardy-Trudinger-Moser inequality by using the method of partitioning the integration domain.

Heisenberg groupthe singular weighted functionTrudinger-Moser inequalityHardy-Trudinger-Moser inequalitybest constants

蔺闯、胡云云、窦井波

展开 >

陕西师范大学数学与统计学院,陕西 西安 710119

Heisenberg群 奇异权函数 Trudinger-Moser不等式 Hardy-Trudinger-Moser 不等式 最佳常数

国家自然科学基金陕西省高等学校青年创新团队项目中央高校基本科研业务费专项

112071269GK202307001

2024

纯粹数学与应用数学
西北大学

纯粹数学与应用数学

影响因子:0.233
ISSN:1008-5513
年,卷(期):2024.40(1)
  • 23