首页|融合全局语义信息的BIG-LSTM-CRF模型

融合全局语义信息的BIG-LSTM-CRF模型

扫码查看
命名实体识别任务是针对输入的文本句子做序列标注的一类自然语言处理任务,其目的是抽取出文本句子中的主语实体和宾语实体.基于深度神经网络的提取方法获得了优异的性能,其中BI-LSTM-CRF是效果显著且具有代表性的模型之一.但该模型在训练过程中忽略了全局语义信息对实体识别准确度的影响.本文通过引入全局语义信息来改进BI-LSTM-CRF模型用于命名实体识别任务的性能:先通过添加一层带有激活操作的全连接层来提取输入文本句子的高维语义信息;再通过一个全连接层将高维语义信息与每个字符进行深度融合,得到该句子融合了全局语义信息的向量表示,并将其用于后续的命名实体识别任务.通过将改进后的模型用于CLUENER2020数据集上,验证了添加全局语义信息融合模块可以提升模型命名实体识别的准确度.
BIG-LSTM-CRF model integrating Global Semantic Information
The named entity recognition task is a kind of natural language processing task that per-forms sequence annotation for the input text sentence,and its purpose is to extract the subject entity and object entity in the text sentence.The extraction method based on deep neural network has ob-tained excellent performance,and BI-LSTM-CRF is one of the most effective and representative models.However,the influence of global semantic information on entity recognition accuracy is ignored in the training process.This paper improves the performance of BI-LSTM-CRF model for named entity recognition tasks by introducing global semantic information.Firstly,the high-dimensional semantic information of the input text sentence is extracted by adding a fully connected layer with activation operation,and then the high-dimensional semantic information is deeply fused with each character through a fully connected layer,and the vector representation of the sentence with the global semantic information is obtained,which is used for subsequent named entity recognition tasks.By using the improved model on the CLUENER2020 dataset,it is verified that adding the global semantic informa-tion fusion module can improve the accuracy of model named entity recognition.

BI-LSTM-CRFnatural language processingnamed entity recognitionneural network

胡俊英、王煜华、金书意、张博

展开 >

西北大学数学学院,陕西 西安 710127

BI-LSTM-CRF 自然语言处理 命名实体识别 神经网络

国家自然科学基金国家自然科学基金

1067115510112021

2024

纯粹数学与应用数学
西北大学

纯粹数学与应用数学

影响因子:0.233
ISSN:1008-5513
年,卷(期):2024.40(1)
  • 17