首页|关于有限群的自中心的非亚循环子群的TI-性和次正规性

关于有限群的自中心的非亚循环子群的TI-性和次正规性

扫码查看
对于自中心的非亚循环子群,本文把它们的TI-性和次正规性结合在一起证明了:如果有限群G的每个自中心的非亚循环子群皆为TI-子群或次正规子群,则G的每个非亚循环子群皆次正规于G,而且这类群是可解的.此外,本文还证明了如果有限群G的每个自中心的非亚循环子群皆为TI-子群,则G的每个自中心的非亚循环子群皆在G中正规.
On the TI-property and subnormality of self-centralizing non-metacyclic subgroups of a finite group
For self-centralizing non-metacyclic subgroups,we combine the TI-property and subnormality together to prove that if every self-centralizing non-metacyclic subgroup of a finite group G is a TI-subgroup or a subnormal subgroup,then every non-metacyclic subgroup of G is subnormal in G and such a group G is solvable.Moreover,we show that if every self-centralizing non-metacyclic subgroup of a finite group G is a TI-subgroup then every self-centralizing non-metacyclic subgroup of G is normal in G.

non-metacyclic subgroupself-centralizingTI-subgroupsubnormal subgroupsolvable

李娜、史江涛

展开 >

枣庄学院数学与统计学院,山东枣庄 277160

烟台大学数学与信息科学学院,山东烟台 264005

非亚循环子群 自中心 TI-子群 次正规子群 可解

国家自然科学基金山东省自然科学基金

11761079ZR2017MA022

2024

纯粹数学与应用数学
西北大学

纯粹数学与应用数学

影响因子:0.233
ISSN:1008-5513
年,卷(期):2024.40(2)
  • 16