首页|一类非局部色散方程解的指数衰减性

一类非局部色散方程解的指数衰减性

扫码查看
结合短波长尺度的物理学,本文讨论了一类非局部色散波动方程.首先,给出了该类稳态的非局部色散波动方程的孤立波解的指数型衰减性的相关结果,将单个方程指数衰减性的研究扩展到了一类方程,这是非常有意义的.其次,基于相关方程的柯西问题的局部适定性结果,研究了当初值在无穷远处衰减时该初值问题的强解的持久性性质.
On exponential decay properties of the solutions to a class of nonlocal dispersive equations
Considered herein is a class of nonlocal dispersive wave equations,which in-corporates physics of short wavelength scales.At first,we give the results with respect to decay property of exponential type of its solitary solutions to the class steady nonlocal dispersive equations.It is of great interest to extend the study of the decay property of a single equation to a class of equations.Then,based on the local well-posedness results of the Cauchy problem associated with the equations,we investigate the persistence prop-erties of the strong solution to this problem,provided the initial data decays at infinity.

a class of nonlocal dispersive equationssolitary-wave solutionsexponential decaypersistence properties

种鸽子、付英

展开 >

西北大学数学学院,陕西西安 710127

一类非局部色散方程 孤立波解 指数衰减 持久性

国家自然科学基金陕西省自然科学基金陕西省自然科学基金山西省自然科学基金

114712592019JM-0072020JC-3720210302124259

2024

纯粹数学与应用数学
西北大学

纯粹数学与应用数学

影响因子:0.233
ISSN:1008-5513
年,卷(期):2024.40(2)
  • 21