首页|基于时序遥感影像物候特征的四川省油菜种植范围提取

基于时序遥感影像物候特征的四川省油菜种植范围提取

扫码查看
基于高分辨率卫星影像的作物分类在农业估产中具有重要应用价值,但在云雨多发地区,卫星成像效果不佳,单时相光学影像难以有效分析不同作物生长规律和特征差异.此外,植被光谱高度相似、随时空动态变化,也给作物高精度识别带来挑战.本研究从作物物候特征的排他性和稳定性出发,基于优化三谐波拟合模型,提出了一种以农作物物候特征为基础,融合光谱、地形、纹理等辅助信息的多特征分类框架.利用该框架,基于Google Earth Engine平台对四川省2020-2021年油菜种植范围进行遥感识别与提取.实验结果表明,该框架具有较好的提取效果,油菜分类总体精度达96.6%,Kappa系数为0.906,分类结果与统计年鉴数据吻合较好.与现有方法相比,该方法分类精度更高,能够实现多时相、大范围农作物精细空间分布的快速提取.
Extracting planting area of rapeseed in Sichuan Province based on phenological characteristics of time-series remote sensing images
Crop classification based on high-resolution satellite imagery has important applicative value for agricultural estimation.However,satellite imaging is not effective in areas with frequent cloud cover and rain,and single-phase optical imagery cannot be used to accurately analyze the patterns of growth and differences in the features of different crops.In addition,the spectral similarity of the vegetation is high,and changes dynamically over time and space,where this poses a major challenge to high-precision crop identification.This study uses the exclusivity and stability of the phenological features of crops as the starting point,and uses an optimized three-harmonic model of fitting to propose a framework for the multi-feature classification of crops.It integrates such auxiliary information as spectral,topographic,and textural data.The authors used this framework along with the Google Earth Engine to identify and extract the planting area of rapeseed in Sichuan Province in 2020 and 2021 by using remote sensing images.The results showed that the proposed framework was able to extract the planting area of rapeseed with an overall classification accuracy of 96.6%and a Kappa coefficient of 0.906.Its results of classification were in good agreement with data from statistical yearbooks.It has a higher accuracy of classification than prevalent methods in the area,and can quickly extract the fine spatial distribution of crops over multiple phases and large areas.

harmonic analysisGoogle Earth Enginephenological featurestime seriesspatial distribution

蒋意如、叶江、谢璋琳、李晓慧

展开 >

成都理工大学地球与行星科学学院,成都 610059

谐波拟合 Google Earth Engine 物候特征 时间序列 空间分布

四川省科技厅自然科学面上项目成都理工大学中青年骨干教师发展资助计划

2019YJ0504JXGG2020-02120

2024

成都理工大学学报(自然科学版)
成都理工大学

成都理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:1.596
ISSN:1671-9727
年,卷(期):2024.51(5)