首页|结合机器学习和高光谱遥感技术的城市水系沉积物重金属含量反演

结合机器学习和高光谱遥感技术的城市水系沉积物重金属含量反演

扫码查看
城市水系被称为城市的血管,水系沉积物记录了城市环境变化的重要信息.快速、高效、准确地获取城市水系沉积物中重金属元素含量的信息,对城市环境监测、生态环境修复治理及可持续发展具有重要意义.以甘肃天水市籍河沉积物为研究对象,开展基于高光谱的Cu,Zn,Cd含量反演研究.对采集的样品进行高光谱数据采集,将光谱数据进行多种数学变换后筛选与重金属实测含量相关性较强的特征波段作为自变量,构建人工神经网络(ANN)、支持向量机、多元逐步回归(SMLR)3种反演模型,并选取决定系数(R2)、均方根误差进行模型精度评价.研究结果表明:(1)原始光谱数据经光谱变换后能有效突出光谱特征信息,不同光谱变换方式的特征波段筛选效果不同.5种变换中一阶微分(FD)、二阶微分(SD)、倒数对数一阶微分(AFD)筛选效果优于倒数对数(AT)和倒数对数二阶微分(ASD).(2)3种反演模型的R2均大于0.6,能够有效实现沉积物重金属含量反演.(3)不同元素的最佳反演模型有差异.Cu的最佳反演模型为SD-ANN模型,R2为0.750;Zn的最佳反演模型为SD-SMLR模型,R2为0.962;Cd的最佳反演模型为SD-SMLR模型,R2为0.761.不同元素的最佳反演模型与特征波段选择有关,基于水系沉积物特征波段开展重金属含量反演有利于提高反演精度.研究为快速获取水系沉积物重金属污染信息提供了参考,为环境无损监测及生态环可持续发展提供了技术支撑.
Inversion of heavy metal content in urban water sediments by combining machine learning and hyperspectral remote sensing data
The urban water system is often called the blood vessel of the city,and sediments in the water system record important information related to changes in the urban environment.The rapid,efficient,and accurate acquisition of heavy metal content information in urban water system sediments is of great significance for urban environmental monitoring,ecological environment restoration,and sustainable development.In this paper,hyperspectral inversion of Cu,Zn,and Cd content in the sediments of Jihe River in Tianshui City,Gansu Province is conducted.After various mathematical transformations of the spectral data,characteristic bands with a strong correlation with the measured heavy metal content are selected as independent variables,and three inversion models based on artificial neural network(ANN),support vector machine,and stepwise multiple linear regression(SMLR)are constructed.The determination coefficient(R2)and root mean square error are selected to evaluate the accuracy of the model.The results show that:(1)the original spectral data can effectively highlight the spectral feature information after spectral transformation,and the feature band screening effects of different spectral transformation methods are different.The screening effects of first-order differential(FD),second-order differential(SD),and reciprocal logarithm first-order differential(AFD)are better than those of reciprocal logarithm(AT)and reciprocal logarithm second-order differential(ASD).(2)The R2 of the three inversion models is greater than 0.6,meaning all three models can effectively realize the inversion of heavy metal content in sediments.(3)The optimal inversion models of different elements are different.The best inversion model for Cu is the SD-ANN model,which has an R2 of 0.750;the best inversion model for Zn is the SD-SMLR model,which has an R2 of 0.962;and the best inversion model for Cd is the SD-SMLR model,which has an R2 of 0.761.The optimal inversion model for each element is related to the selection of the characteristic band(s),and the inversion of heavy metal content based on the characteristic bands of stream sediments is conducive to improving inversion accuracy.This study provides a reference for the rapid acquisition of heavy metal pollution information in stream sediments,and provides technical support for nondestructive environmental monitoring and the sustainable development of ecological environments.

stream sedimenthyperspectral inversionheavy metal elementscharacteristic bandcontent prediction

王显菊、刘严松、刘琦、吴静、邵青青、Mayada Jamal、马叶情

展开 >

地球勘探与信息技术教育部重点实验室(成都理工大学),成都 610059

四川城市职业学院,成都 610110

四川三合空间科技有限公司,成都 610094

甘肃工业职业技术学院,甘肃天水 741025

展开 >

水系沉积物 高光谱反演 重金属元素 特征波段 含量预测

2024

成都理工大学学报(自然科学版)
成都理工大学

成都理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:1.596
ISSN:1671-9727
年,卷(期):2024.51(6)