首页|一种边缘辅助的卫星影像云修复卷积神经网络

一种边缘辅助的卫星影像云修复卷积神经网络

扫码查看
遥感影像的云修复是改善影像质量、降低数据成本的一种重要手段.使用Landsat 8影像研究卷积神经网络在云修复中的应用,提出一种影像信息重建的新式网络结构——边缘辅助的门控卷积网络(edge-guided gated convolutional network,EGCN).该网络以多时相数据作为含云影像上被遮挡信息的辅助数据,主干网络为多时空门控卷积网络(spa-tial-temporal based gated convolutional network,STGCN),在多尺度特征融合模块引入一种改进的非局部(non-local,NL)模块——门控非局部(gated non-local,GNL)来替代传统的卷积层,并以边缘特征提取网络(edge network,ENet)为分支,从边缘信息层面进行特征引导.实验结果表明,GNL模块和ENet的加入均有助于提升云修复效果.
Cloud Removal of Satellite Image Using Edge-Guided Convolutional Neural Network
Cloud removal of remote sensing images is one of the important technologies to improve data quality and reduce data cost.A novel network structure to reconstruct missing in-formation in images,which is called edge-guided gated convo-lutional network(EGCN),is put forward via the applications of convolutional neural network in cloud removal task using Landsat 8 images.This network uses multi-temporal data as auxiliary data for padding cloudy images.Spatial-temporal based gated convolutional network(STGCN)is used as the main trunk and an improved non-local(NL)block called gated non-local(GNL)is introduced to replace the traditional convolution layers.Besides,an edge network(ENet)is used as a branch to guide the feature from the edge information level.The experimental results show that GNL and ENet both bene-fit cloud removal task.

remote sensing imagecloud removaldeep learningconvolutional neural network

张雨姝、戴佩玉

展开 >

武汉大学遥感信息工程学院,湖北 武汉,430079

江苏省农业科学院,江苏 南京,210014

遥感影像 云修复 深度学习 卷积神经网络

国家自然科学基金

41471288

2024

测绘地理信息
武汉大学

测绘地理信息

CSTPCD
影响因子:0.563
ISSN:1007-3817
年,卷(期):2024.49(2)
  • 16