首页|结合单点分类与改进均值漂移聚类的地面激光点云单木检测

结合单点分类与改进均值漂移聚类的地面激光点云单木检测

扫码查看
针对林分下层阴影遮挡和树冠密集分布导致在大范围场景中单木识别困难,易产生过分割和欠分割问题,提出了一种基于点云分类和均值漂移聚类的单木检测方法,可为森林资源调查提供地面参考数据并丰富单木检测手段.该方法首先使用布料模拟滤波(cloth simulation filtering,CSF)分离出地面点并建立地面模型;然后通过自适应K-NN(K-nearest neighbors)对非地面点构造点云特征并基于随机森林(random forest,RF)提取树干点;最后基于改进均值漂移聚类进行单木提取,并对点簇切片进行RANSAC(random sample consensus)圆柱拟合确定单木位置.结果表明,该方法的两块研究样地单木检测精确率分别为90.06% 和91.00%,召回率分别为93.33%和91.46%.另外,还通过单木聚类实验验证并分析了均值漂移聚类在单木提取中的有效性与准确性.
Single Stem Extraction from Ground Laser Point Cloud Based on Point Classification and Improved Mean Shift Clustering
In view of the problem of over-segmentation and under-segmentation generated by the difficulties of individual tree recognition in a large-scale scene caused by the shadow-ing effect of understory and dense distribution of crown,a stem detection method based on point cloud classification and mean shift clustering is proposed in this paper,which can pro-vide ground reference data for forest inventory and enrich the methods of the stem detection. Firstly,the ground points are separated by Cloth Simulation Filter (CSF) for the ground model establishment. Then,the point cloud features for non-ground points are constructed by adaptive KNN and the stem points based on Random Forest (RF)are extracted. Finally,an improved method based on Mean Shift clustering is used for single stem extraction. The non-stem clusters are removed by adaptive filtering and the stem detection can be realized by the RANSAC cylinder fitting from the sliced point cloud. The results show that the precision of the two research plots based on the proposed method are 90.06% and 91.00% and the recall rates are 93.33% and 91.46% respectively. In addi-tion,the validity and accuracy of mean shift clustering in sin-gle stem extraction are verified and analyzed by single tree clustering experiment.

terrestrial laser scanning (TLS)RFmean shift clusteringRANSAC cylinder fittingindividual tree position

刘祥江、陈茂霖、张昕怡、姬翠翠、赵立都

展开 >

重庆交通大学土木工程学院,重庆,400074

自然资源部城市国土资源监测与仿真重点实验室,广东深圳,518038

地面激光扫描 随机森林 均值漂移聚类 RANSAC圆柱拟合 单木位置

国家自然科学基金国家重点研发计划自然资源部城市国土资源监测与仿真重点实验室开放基金重庆市研究生科研创新项目

418013942021YFB2600603KF-2021-06-102CYS21339

2024

测绘地理信息
武汉大学

测绘地理信息

CSTPCD
影响因子:0.563
ISSN:1007-3817
年,卷(期):2024.49(3)
  • 1
  • 5