首页|融合极化合成孔径雷达图像多特征的建筑物提取

融合极化合成孔径雷达图像多特征的建筑物提取

扫码查看
从极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)图像中提取建筑物对减灾防灾具有重要意义.本文充分利用不同极化特征以及纹理特征之间的互补性进行建筑物提取.首先,提取PolSAR图像的极化特征和纹理特征;然后,采用特征选择的随机森林(random forest,RF)算法进行建筑物提取并分析特征重要性.用机载AIR-SAR和ESAR数据进行实验,结果表明,本文方法的总体精度较高,分别达到了97.77%和97.01%.此外,在PolSAR图像中,极化特征是主要特征,纹理特征是次要特征,但是纹理特征可以作为极化特征的补充.
Extraction of Buildings with Multi-features from Polarization Synthetic Aperture Radar Image
It is of great significance to extract buildings from Polari-metric Synthetic Aperture Radar (PolSAR) images for disas-ter reduction and prevention. This paper makes full use of the complementarities between different polarization features and texture features to extract buildings. First,extracting the po-larization features and texture features. Then,random forest method with features selection is used to extract buildings and analyze the importance of features. In this study,airborne AIRSAR and ESAR data are used for experiments. The re-sults show that the overall accuracy of the proposed method is higher,reaching 97.77% and 97.01%,respectively. In addi-tion,in PolSAR images,the polarization feature is the main feature,while the texture feature is the secondary feature,and the texture feature can be used as a supplement to the polariza-tion feature.

building extractionPolSARpolarimetric featurestexture featuresRF

滕佳华、邵振峰、吴文福、郭宋静、李亚龙、赵新伟

展开 >

生态环境部卫星环境应用中心,北京,100094

国家环境保护卫星遥感实验室,北京,100094

武汉大学测绘遥感信息工程国家重点实验室,湖北武汉,430079

武汉大学遥感信息工程学院,湖北武汉,430079

中国地质大学(武汉)地球物理与空间信息学院,湖北武汉,430074

中国资源卫星应用中心,北京,100094

展开 >

建筑物提取 PolSAR 极化特征 纹理特征 随机森林

高分遥感环保应用示范系统(二期)

05-Y30B01-9001-19/20

2024

测绘地理信息
武汉大学

测绘地理信息

CSTPCD
影响因子:0.563
ISSN:1007-3817
年,卷(期):2024.49(3)
  • 4