首页|一种用于视频超分辨率和去运动模糊联合处理的深度学习网络

一种用于视频超分辨率和去运动模糊联合处理的深度学习网络

扫码查看
针对视频影像存在运动模糊及分辨率较低的问题,本文提出了一种视频超分辨率和去运动模糊联合处理的卷积神经网络(convolutional neural network,CNN),该网络可以应对剧烈的运动模糊干扰并恢复出清晰的高分辨率视频.首先,利用金字塔光流网络提取模糊帧中的清晰潜像并输出高分辨率的光流图来完成运动估计,并通过逐帧递归的方式完成运动补偿以充分利用时间先验信息;然后,以并联的方式分别提取超分辨率和去模糊特征;最后,利用通道注意力机制来增强两个分支的特征融合效率.在公开数据集上的实验结果表明,相比于现有的同类型超分辨率和去模糊算法,本文方法的重建结果更优.
A Deep Learning Method for Joint Processing of Video Super-Resolution and Motion Deblurring
Aiming at the problems of motion blur and low res-olution caused by various reasons in video frames,this paper proposes a convolutional neural network for joint processing video super-resolution and motion deblurring which is sup-posed to be able to cope with severe motion blur and restore sharp high-resolution video frames. The proposed network first introduces a pyramid optical flow network to extract sharp latent images in blurred frames and generate high resolu-tion optical flow maps for motion estimation. The motion compensation is then completed through frame-to-frame recur-sion,making full use of temporal's a priori information. Next,the super resolution features and deblurring features are extracted separately in a parallel manner. Finally,the channel attention mechanism is used to enhance the fusion efficiency of the two branch features. The experimental results on public benchmarks show that the results of our method are superior to the existing super resolution methods and deblurring methods.

super-resolutionvideo deblurringCNNmotion blur

方宁、詹总谦、王鑫

展开 >

武汉大学测绘学院,湖北武汉,430079

超分辨率 视频去模糊 卷积神经网络 运动模糊

国家自然科学基金

61871295

2024

测绘地理信息
武汉大学

测绘地理信息

CSTPCD
影响因子:0.563
ISSN:1007-3817
年,卷(期):2024.49(3)
  • 1