首页|抗遮挡和模糊的平面目标鲁棒追踪算法研究

抗遮挡和模糊的平面目标鲁棒追踪算法研究

扫码查看
本文提出一种基于渲染的数据生成方式,可模拟相机运动导致的运动模糊、散焦模糊等效果,并由此构建了一个新的数据集,以支持平面目标追踪算法的研究.此外,基于图像光流和平面掩码多任务学习,提出一种新的平面目标追踪模型.具体来说,该方法通过估计的平面掩码剔除背景和遮挡干扰,筛选出可靠的稠密光流估计,以提高追踪算法的鲁棒性.通过在公共数据集和补充数据上进行验证,该算法精度和鲁棒性都有所提升,同时在模糊、遮挡以及纹理缺乏等情况下都可进行有效追踪.
Research on Robust Tracking Algorithm for Planar Object Against Occlusion and Blur
This paper proposes a rendering-based data genera-tion method that can simulate motion blur,defocus blur and other effects caused by camera movement,and builds a new data set based on this to support the research of planar target tracking algorithms. In addition,this new planar object track-ing model based on image optical flow and planar mask multi-task learning. Specifically,the method eliminates background and occlusion interference through the estimated plane mask,and screens out reliable dense optical flow estimates to im-prove the robustness of the tracking algorithm. The applica-tion of the planar target tracking algorithm on public datasets and supplementary data reveals that its accuracy and robust-ness improve,and it can be effectively tracked under condi-tions such as blur,occlusion,and lack of texture.

planar object trackingoptical flow estimationmask estimationdataset construction

方晗、姚剑

展开 >

武汉大学遥感信息工程学院,湖北武汉,430079

广东开放大学人工智能应用创新研究中心,广东广州,510091

平面目标追踪 光流估计 掩码估计 数据集构建

国家自然科学基金深圳市科技计划资助深圳市中央引导地方科技展专项资金资助

42271445JCYJ202205301406180402021Szvup100

2024

测绘地理信息
武汉大学

测绘地理信息

CSTPCD
影响因子:0.563
ISSN:1007-3817
年,卷(期):2024.49(5)
  • 3