首页|洞庭湖湿地长时序动态监测与生态稳定性分析

洞庭湖湿地长时序动态监测与生态稳定性分析

扫码查看
湿地由于其独特的水文特征,地表覆盖变化剧烈,而长时序高频次地表覆盖数据的缺乏导致湿地在动态监测上研究困难.本文基于时空融合处理的长时序影像,设计一种结合地物变化强度和类别平衡双权重的自适应语义分割模型,提出了高频次的地物分类制图方法,有效解决地表覆盖制图中高时空分辨率影像缺乏和分类样本缺乏、人工依赖高的问题,实现了对洞庭湖湿地的2001—2020年月尺度地物动态监测.本文方法的总体分类精度和Kappa系数分别为86.78%和0.76.长序列高频次的地表覆盖变化结果显示,洞庭湖湿地格局与城陵矶水位密切相关,其生态稳定性呈现先降后升的年度特征和夏高冬低的季节性特征,研究成果对于湿地针对性保护决策和防洪管理提供实证依据.
The Long-Term Dynamic Monitoring and Ecological Stability Analysis of Dongting Lake Wetlands
Wetlands,due to their unique hydrological charac-teristics,experience drastic land cover changes. The lack of long-term,high-frequency land cover data has made it chal-lenging to dynamically monitor these changes in wetlands. This paper presents a dual-weight adaptive semantic segmen-tation model that combines feature change intensity and cate-gory balance,developed based on long-term temporal and spatially fused imagery. This model proposes a high-frequen-cy land cover classification mapping method,which effective-ly addresses the issues of continuity,high spatiotemporal reso-lution imagery,scarcity of classification samples,and high de-pendency on manual intervention in land cover mapping. It en-ables dynamic monitoring of land cover changes on a monthly scale in the Dongting Lake wetlands from 2001 to 2020.. The overall classification accuracy and Kappa coefficient of the proposed method are 86.78% and 0.76,respectively. Based on long-term,high-frequency land cover change data,the land cover distribution in the Dongting Lake wetlands is closely related to the water level at Chenglingji station. The ecological stability shows an annual characteristic of initially decreasing then increasing,along with a seasonal characteris-tic of being higher in summer and lower in winter. The results of this study provide empirical evidence for targeted wetland conservation decision-making and flood management.

spatiotemporal fusionland cover classificationdeep learningDongting Lake wetlandsecological stability

钱方睿、史文中、郭迪洲、张敏

展开 >

武汉大学遥感信息工程学院,湖北武汉,430079

香港理工大学土地测量及地理资讯学系,香港

香港理工大学智慧城市研究院,香港

中国矿业大学环境与测绘学院,江苏徐州,221116

展开 >

时空融合 地表分类 深度学习 洞庭湖湿地 生态稳定性

香港理工大学研究基金香港理工大学研究基金香港理工大学研究基金香港理工大学研究基金

CD031-ZVN6ZVU1U-ZECR

2024

测绘地理信息
武汉大学

测绘地理信息

CSTPCD
影响因子:0.563
ISSN:1007-3817
年,卷(期):2024.49(5)
  • 26