首页|影像密集匹配点云数据的建筑物平面分割方法

影像密集匹配点云数据的建筑物平面分割方法

扫码查看
针对目前点云分割方法在影像密集匹配DIM点云中容易过分割和欠分割的问题,提出一种DIM点云数据的建筑物平面分割方法.首先对原始点云进行局部高程分割并投影到xoy平面;其次根据点云密度分布进行去噪并采用随机采样一致性结合欧式聚类算法提取建筑物轮廓线段;再次以提取的线段作为约束条件分割建筑物立面点云;最后使用欧式聚类算法提取屋顶点云.实验结果表明,该方法能有效地分割DIM建筑物平面点云.
Building Plane Segmentation Method Based on Dense Image Matching Point Cloud Data
Aimed at the problem that current point cloud segmentation methods are easy to be over-segmented and under-segmented in Dense Image Matching(DIM)point cloud,a building plane segmentation method based on DIM point cloud data is proposed in the paper.Firstly,the original point cloud is segmented by local elevation and projected to xoy plane.Secondly,noise is removed according to the density distribution of point cloud,and the building contour line segment is extracted by RANSAC combined with Euclidean clustering algorithm.Then,the extracted line segment is used as constraint condition to segment the building elevation point cloud.Finally,the roof point cloud is extracted by using European clustering algorithm.Experimental results show that this method can effectively segment DIM building plane point cloud.

building point cloudDIMpoint cloud segmentationconstraint conditionRANSAC

余和顺、刘荣、符娇

展开 >

东华理工大学 测绘工程学院,江西 南昌 330013

建筑物点云 影像密集匹配 点云分割 约束条件 随机采样一致性算法

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(4)