首页|双路径特征金字塔网络遥感图像建筑物提取方法

双路径特征金字塔网络遥感图像建筑物提取方法

扫码查看
虽然近年来卷积神经网络在遥感图像建筑物提取研究中取得了极大的成功,但其仍然面临着多尺度目标识别、分割目标边界模糊和提升类不平衡目标识别精度等问题.为解决以上问题,提出了一种双路径特征金字塔编解码结构,用于遥感图像建筑物提取.以高分辨率网络为编码器、带注意力机制的特征金字塔为解码器,提高相同目标不同尺度识别能力;通过在编码器加入边界网络增强其对目标边界特征学习,从而提高目标边界识别精度;采用交叉熵损失函数与Dice损失函数加权方式来增强不平衡目标提取精度.最后在WHU航空图像和WHU卫星图像Ⅱ上验证提出方法的有效性,交并比分别达到了 90.0%和 71.1%.
A Building Extraction Method for Remote Sensing Images Based on Dual-path Feature Pyramid Network
Although convolutional neural network has achieved great success in building extraction from remote sensing images in recent years,it still faces some problems,such as multi-scale target recognition,fuzzy target boundary segmentation,and improving the recognition accuracy of unbalanced targets.In order to solve the above problems,a dual path feature pyramid encoder-decoder structure for remote sensing image is proposed to build ex-traction in the paper.The high-resolution network is used as encoder and the feature pyramid with attention mecha-nism is used as decoder to improve the recognition ability of the same target at different scales.Boundary network is added into the encoder to enhance the learning of target boundary features and enhance the extraction accuracy of target boundary recognition.The cross-entropy and Dice loss are weighted to enhance the accuracy of unbalanced target extraction.Finally,the experiment are carried out on WHU aerial image and WHU satellite image Ⅱ to e-valuate the method,and the intersections over union reach 90.0%and 71.1%respectively.

building extractionfeature pyramidconvolutional neural networkhigh-resolution networkremote sensing images

张进鹏、李宏伟、赵亚帅、吴泽康、李想

展开 >

郑州大学 地球科学与技术学院,河南 郑州 450000

郑州大学 信息工程学院,河南 郑州 450001

建筑物提取 特征金字塔 卷积神经网络 高分辨率网络 遥感图像

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(4)