首页|基于机器学习的多源矢量同名面实体几何不一致性识别和处理方法

基于机器学习的多源矢量同名面实体几何不一致性识别和处理方法

扫码查看
针对多源矢量数据融合更新中同名实体之间存在明显几何位置差异,导致几何不一致性识别和处理自动化程度较低的问题,提出一种面向多源矢量同名面实体的几何不一致性识别与处理方法.首先,对几何不一致性的特征分类进行深入分析,通过机器学习方法构建基于同名面实体几何不一致性特征指标的识别模型;然后,引入点集配准算法进行实体位置对齐,进而实现同名面实体的几何一致性处理.试验选取舟山地区多源面状水系数据进行验证.结果表明,该方法几何不一致性识别结果具有较高的准确率,几何一致性处理结果优于现有直接叠置分析的方法,可以有效降低位置误差,提高几何一致性.
A Method for Recognizing and Processing Geometric Inconsistencies in Multi-source Identical Polygonal Vector Entities Based on Machine Learning
In the fusion and updating of multi-source vector data,there are significant geometric positional differ-ences between identical entities,leading to a low degree of automation in geometric inconsistencies recognition and processing.A geometric inconsistency recognition and processing method for multi-source identical polygonal vector entities is proposed in this paper.Firstly,an in-depth analysis is conducted on the classification of geometric in-consistency features,and a recognition model based on geometric inconsistency feature indices of identical polygo-nal entities is constructed by using machine learning methods.Then,the point set registration algorithm is intro-duced for entity alignment to achieve geometric consistency processing of identical polygonal entities.The effective-ness of the proposed method for multi-source hydrological data are tested in Zhoushan area.The results demonstrate that this method has high accuracy in identifying geometric inconsistencies,and the geometric consistency process-ing results are superior to those of existing direct overlay operation methods.Additionally,this method can effec-tively reduce positional errors and improve geometric consistency.

geometric inconsistency recognitiongeometric consistency processingentity alignmentidentical po-lygonal entitiesmachine learning

张付兵、温伯威、郭丽萍、李元復、黄文君

展开 >

信息工程大学,河南 郑州 450001

61175部队,江苏 南京 210049

几何不一致性识别 几何一致性处理 实体对齐 同名面实体 机器学习

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(4)