首页|低成本MEMS惯性器件行人运动模式识别算法

低成本MEMS惯性器件行人运动模式识别算法

扫码查看
针对行人正常行走、上楼、下楼等常见运动模式识别的问题,提出了一种低成本的足部MEMS惯性器件运动模式识别算法.首先,根据MEMS惯性器件的安装关系和实际采集的数据,分析了不同运动模式下的加速度计和陀螺仪的输出特征;然后,选取x轴方向的加速度计和y轴方向的陀螺仪输出的数据,利用输出波峰波谷的先后逻辑顺序,识别正常行走、上楼、下楼 3 种常见的行人运动模式;最后,对 4 名实验人员采集的 10 组数据进行分析.结果表明:采用该方法,正常行走状态识别的平均成功率可达到 100%;上楼状态识别的平均成功率达到 97.25%以上;下楼状态识别的平均成功率达到 98.99%以上.从而验证了该方法的有效性.
Recognition Algorithm of Pedestrian Motion Patterns Based on Low-cost MEMS Inertial Sensors
A motion pattern recognition algorithm based on the low-cost foot-mounted MEMS inertial sensors is pro-posed for the common motion pattern recognition problems of pedestrians such as walking,going upstairs,and go-ing downstairs.Firstly,according to the installation relationship of the MEMS inertial sensors and the actual data collected,the output features of the accelerometer and gyroscope under different motion pattern are analyzed.Then,the output data of the accelerometer in the x-axis direction and the gyroscope in the y-axis direction are se-lected,and the three common motion patterns of pedestrians such as walking,going upstairs,and going downstairs are identified based on the logical sequence of wave peaks and valleys in the output.Finally,ten sets of data col-lected by four experimenters are analyzed.The results show that the average success rate of walking status recogni-tion can reach 100%,the average success rate of going upstairs recognition reaches more than 97.25%,and the average success rate of going downstairs recognition reaches more than 98.99%,which verifies the effectiveness of the proposed method.

motion patternsMEMS inertial sensorsaccelerometergyroscoperecognition algorithm

唐谦、张伦东、贾铮洋、孙付平

展开 >

信息工程大学,河南 郑州 450001

长沙金维集成电路股份有限公司,湖南 长沙 410000

展讯通信有限公司,上海 200120

运动模式 MEMS惯性器件 加速度计 陀螺仪 识别算法

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(5)