首页|点云多特征分类构建的车辆目标智能识别方法

点云多特征分类构建的车辆目标智能识别方法

扫码查看
激光雷达是智能车环境感知的重要传感器之一.针对目前激光点云感知和识别车辆效果较差的问题,提出了一种基于点云多特征分类构建的车辆目标智能识别方法.首先,通过地面分割、空间聚类等方法对点云数据进行预处理,得到若干待识别目标;其次,从车辆尺寸、车身材料、点云特征 3 个方面,对待识别目标进行多特征分类构建;最后,制作训练集对支持向量机进行训练,利用训练好的分类器对待识别目标进行识别.利用百度Apollo数据集中的 6 个场景进行实验,本文方法的识别准确率均在 90%以上,识别效果较现有方法有所提高.
Vehicle Target Intelligent Recognition Method Based on Point Cloud Multi-feature Classification
LiDAR is one of the important sensors of intelligent vehicle environment perception.Aiming at the prob-lem of poor effect of laser point cloud perception and vehicle recognition,an intelligent vehicle target recognition method based on multi-feature classification of point cloud is proposed.Firstly,ground segmentation and spatial clustering are used to preprocess point cloud data,and several targets to be identified are obtained.Secondly,for the target to be recognized,the multi-feature classification is constructed from the dimensions of vehicles,body materials and point cloud features.Finally,a training set is made to train the support vector machine and the trained classifier is used to recognize the target.Six scenarios from the Baidu Apollo dataset are used in the experi-ment.The accuracy of the proposed method is above 90%,and the recognition effect is improved compared with that of the existing methods.

LiDARvehicle recognitionsupport vector machinefeature constructiontarget recognition

王凯、刘松林、代君、聂凤祥

展开 >

信息工程大学,河南 郑州 450001

时空感知与智能处理自然资源部重点实验室,河南 郑州 450001

隆化县交通运输局,河北 承德 068150

郑州航空工业管理学院,河南 郑州 450015

运城市规划和自然资源局,山西 运城 044000

展开 >

激光雷达 车辆识别 支持向量机 特征构建 目标识别

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(5)