首页|极化滤波和跨维交互混洗的遥感影像目标检测

极化滤波和跨维交互混洗的遥感影像目标检测

扫码查看
深度网络提取的多通道特征缺乏关联性,表达能力弱,对舰船目标识别精度低.针对上述问题,提出了基于跨维交互混洗特征的遥感目标检测方法.首先在特征提取阶段,利用等变神经网络提取具有旋转等变性的特征,有效降低目标方向角任意造成的定位精度损失.在此基础上,利用极化滤波机制的维度坍塌方法,对提取的特征分别进行仅空间和仅通道维度的权重学习,有效避免了降维引起的特征丢失.再应用跨维交互操作挖掘通道与空间维度间的关联信息,将通道间的信息混洗后融合,建立维度间的映射关系,增强特征的表达能力,改善目标的定位精度.通过在HRSC2016 公开数据集上的实验证明本方法的检测精度高于对比方法,说明了所提方法的有效性.
Remote Sensing Image Target Detection of Polarization Filtering and Cross-dimensional Interactive Shuffling
The multi-channel features extracted by the deep network have weak relevance,weak expression ability,and low accuracy of ship target recognition.To solve the above problems,a remote sensing target detection method based on cross-dimensional interactive shuffling features is proposed in this paper.First,in the feature extraction stage,the equivariant neural network is used to extract features with rotational equivariance,which effectively re-duces the loss of positioning accuracy caused by arbitrary target direction angles.On this basis,the dimensionality collapse method of the polarization filtering mechanism is used to perform weight learning of the extracted features in only space and channel dimensions,which effectively avoids feature loss caused by dimensionality reduction.To establish the mapping relationship between the dimensions,the cross-dimensional interactive operations are used to mine the associated information between the channel and the spatial dimension,and the information between the channels is shuffled before fusion.And as a result,the ability to express features is enhanced and the location ac-curacy of the target is improved.Experiments on the HRSC2016 public data set prove that the detection accuracy of this method is higher than that of the comparison method,which shows the effectiveness of the proposed method.

target detectionpolarization filteringrelated informationcross-dimensional interactionshuffling

孙尚琦、张宝华、吕晓琪、谷宇、王月明、刘新、任彦、李建军

展开 >

内蒙古科技大学 信息工程学院,内蒙古 包头 014010

内蒙古自治区模式识别与智能图像处理重点实验室,内蒙古 包头 014010

内蒙古工业大学 信息工程学院,内蒙古 呼和浩特 010051

目标检测 极化滤波 关联信息 跨维交互 混洗

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(5)