首页|改进的居民地要素模板匹配化简方法

改进的居民地要素模板匹配化简方法

扫码查看
针对基于转角函数的模板匹配化简方法易出现的 3 类化简错误,即模板库找不到合适的化简模板、计算形状相似度时错误选择模板、化简结果出现位置及方向偏差等问题,提出一种改进的居民地要素模板匹配化简方法.首先构建基于转角函数的无偏相似性度量模型,减小居民地与模板之间的形状相似性度量误差;然后将匹配过程划分为"粗匹配"和"精匹配"两个阶段,克服形状相似性度量对边界起始点选择的敏感性,提高匹配效率;最后针对化简区域或邻近区域已有更小尺度居民地数据的情况,研究模板库自动扩充方法,提高模板库的完备性.通过真实数据试验分析,验证了本文方法在化简中能保持居民地的主体形态特征,实现不同尺度的化简.与现有方法相比,本文方法能够有效克服 3 类化简错误,提高对复杂居民地的化简率,使化简居民地与模板之间的形状吻合度更高.
An Optimized Simplification Method Based on Template Matching for Buildings
There are three kinds of simplification errors in template matching simplification method based on turning function,the template library can't find a suitable simplification template,the template is wrongly selected when calculating the shape similarity,and the simplification results are deviated in position and direction.To solve these problems,an improved template matching simplification method for buildings is proposed in this paper.Firstly,an unbiased similarity measurement model based on turning function is constructed to reduce the measurement error of shape similarity between buildings and templates.Then,the matching process is divided into two stages,including"rough-matching"and"accurate-matching",which reduces the time of template traversing different starting points in similarity measurement,improves the matching efficiency and corrects the template direction at the same time.Finally,aiming at the situation that the simplified area or adjacent area has smaller scale data of buildings,the au-tomatic expansion method of template library is studied to improve the completeness of template library.Through the experimental analysis of real data,it is verified that the method in this paper can keep the main morphological characteristics of buildings and realize simplification at different scales.Compared with existing methods,this method can effectively overcome three kinds of simplification errors,and improve the simplification rate of complex buildings,make the shape coincidence between simplified buildings and templates higher.

template matchingturning functionbuilding simplificationcartographic generalizationtemplate li-brarysimilarity measure

李安平、翟仁健、殷吉崇、朱丽、徐杨斌、万瑞康

展开 >

信息工程大学,河南 郑州 450001

78098 部队,四川 成都 610000

75838 部队,广东 广州 510000

模板匹配 转角函数 居民地化简 制图综合 模板库 相似性度量

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(5)