首页|混合BFO-PSO的卫星选择算法

混合BFO-PSO的卫星选择算法

扫码查看
针对传统粒子群优化算法(PSO)在进行卫星选择时易陷入局部最优的问题,引入了细菌觅食算法(BFO)对其进行改进,提出了一种混合BFO-PSO的卫星选择算法.首先,通过引入BFO的趋向和迁徙操作,能够提升PSO的局部搜索能力,增加其跳出局部最优的可能性.其次,引入了一种卫星贡献度算子,在BFO-PSO算法选择给定数量下的最优卫星组合后,通过计算剩余卫星贡献度逐步增加组合卫星数量.该算子能够减少几何精度因子(GDOP)矩阵求逆运算次数,提升计算速度.最后,通过对实际采集到的GPS数据进行仿真测试,证明了所提算法的有效性.
Satellite Selection Algorithm Based on Hybrid BFO-PSO
Aiming at solving the problem that the traditional particle swarm optimization(PSO)algorithm is easy to fall into the local optimum in satellite selection,the bacterial foraging optimization(BFO)algorithm is introduced to improve the PSO.Then,a satellite selection algorithm based on hybrid BFO-PSO is proposed.Firstly,by intro-ducing the chemotactic and migration operation of BFO,the local search ability and the possibility of jumping out of the local optimal of PSO can be improved.Besides,a satellite contribution operator is also proposed.After selec-ting the optimal satellite combination with a given number based on BFO-PSO,the number of combined satellites can be gradually increased by calculating the contribution operator of the remaining satellites.With the operator,the number of matrix inversion operations of geometric dilution of precision(GDOP)can be reduced,which will improve the calculation speed.Finally,the validity of the proposed approach is illustrated by the simulation based on the collected GPS data in practice.

particle swarm optimization(PSO)bacteria foraging optimization(BFO)satellite selectionsatellite contribution operatorgeometric dilution of precision(GDOP)

许政、阮西玥、万胜来

展开 >

中航机载系统共性技术有限公司,江苏 扬州 225000

粒子群优化算法 细菌觅食算法 卫星选择 卫星贡献度算子 几何精度因子

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(6)