首页|一种半稠密视差图修补的深度学习半监督方法

一种半稠密视差图修补的深度学习半监督方法

扫码查看
目前主流的匹配方法如块匹配、半全局块匹配方法等生成的视差图为半稠密状,在一些需要稠密视差图的场景无法使用,因此必须进行修补.然而传统的修补方法视差图精度有限,无法满足高精度场景需求.针对该问题提出了一种基于深度学习半监督的修补方法,该方法以传统匹配方法为基础,利用深度学习提取特征的优势,修补了视差图中的缺失区域.实验结果表明:1)基于半监督的修补方法精度远高于传统修补方法,实验中绝对终点误差和 3 像素误差相比于传统修补方法分别降低了 33.98%和 17.83%;2)虚拟场景的训练结果迁移学习至真实场景可进一步提升修补精度,绝对终点误差和 3 像素误差分别降低了5.17%和 12.58%,而且能够加速收敛,具有重要的实用价值.
A Deep Learning Semi-supervised Method for Semi-dense Disparity Map Repair
The disparity map generated by the current mainstream stereo matching methods,such as BM and SG-BM,is semi-dense,which cannot be used in some scenarios requiring dense disparity map,so it must be repaired.However,the precision of traditional repair method is limited and cannot meet the requirements of high-precision scene.To solve this problem,a semi-supervised repair method based on deep learning is proposed in this paper.Based on the traditional stereo matching method,this method makes use of the advantages of deep learning in fea-ture extraction to repair the missing areas of the disparity map.The experimental results show the following points:1)The accuracy of the semi-supervised repair method is much higher than that of the traditional repair method.In the experiment,EPE and 3PE are reduced by 33.98%and 17.83%respectively compared with those of the tradi-tional repair method.2)The training results of virtual scene can be transferred to real scene to further improve the repair accuracy,EPE and 3PE can be reduced by 5.17%and 12.58%respectively,and convergence can be accel-erated,which has important practical value.

semi-global block matching(SGBM)semi-superviseddisparity mapdeep learningdense matching

王淑香、官恺、刘智、牛泽璇、金飞、林雨准

展开 >

信息工程大学,河南 郑州 450001

西安测绘总站,陕西 西安 710054

半全局块匹配方法 半监督 视差图 深度学习 密集匹配

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(6)