首页|AIS数据特征优选的随机森林船舶目标分类识别

AIS数据特征优选的随机森林船舶目标分类识别

扫码查看
准确并高效分类识别船舶目标,对促进海上智能交通管理、增强海上态势感知具有重要意义.针对现有船舶目标分类识别方法在构造多维特征空间时容易造成信息冗余,导致分类精度和分类效率降低等问题,提出一种AIS数据特征优选的随机森林船舶目标分类识别方法.首先,从AIS数据中提取与船舶速度、加速度、航向和距离相关的 18 维特征;其次,利用平均不纯度减少的方法评估特征的重要性,并优选最佳特征组合;最后,利用特征优选随机森林对船舶目标分类识别,并与基于原始特征的随机森林的分类结果对比评估.实验结果表明,从AIS数据中提取的速度特征和距离特征在船舶分类识别中具有较为重要的作用.优选重要性前 14 位的特征参于分类识别,可以高效利用AIS数据蕴含的丰富信息,降低模型的复杂度;并能较好地区分不同类型的船舶,总体分类准确率达 86.2%;分类效率优于基于原始特征的随机森林,能够满足船舶目标准确高效的分类识别需求.
Ship Targets Classification and Recognition of Random Forest Based on AIS Data Feature Optimization
Accurately and efficiently classifying and recognizing ship targets is of great significance to promote mari-time intelligent transportation management and enhance maritime situational awareness.In the existing methods of ship targets classification and recognition,the multi-dimensional feature space is generally constructed,which is easy to cause information redundancy,resulting in the reduction of classification accuracy and efficiency,etc.A method of ship targets classification and recognition of random forest based on AIS data feature optimization is pro-posed in this paper.Firstly,18-dimensional features related to ship speed,acceleration,course and distance are extracted from AIS data.Secondly,the average impurity reduction method is used to evaluate the importance of fea-tures and optimize the best feature combination.Finally,the ship targets are classified and recognized by using the feature optimized random forest,and the classification results are compared and evaluated with those of the original random forest.The experimental results show that the speed features and distance feature extracted from AIS data play an important role in the classification of ship targets.The optimal 14 features ordered by importance are select-ed,which can efficiently use the abundant information contained in AIS data,reduce the complexity of the model and better distinguish different types of ships.The overall classification accuracy reaches 86.2%,and the classifi-cation efficiency is better than that of the original random forest,which can meet the needs of accurate and efficient classification and recognition of ship targets.

ship targetsclassification and recognitionAIS datafeature optimizationrandom forest

王宇君、郭健、徐立、李宗明、李可欣、陈辉

展开 >

信息工程大学,河南 郑州 450001

31682部队,甘肃 兰州 730000

31438部队,辽宁 沈阳 110031

船舶目标 分类识别 AIS数据 特征优选 随机森林

2024

测绘科学技术学报
信息工程大学科研部

测绘科学技术学报

影响因子:0.594
ISSN:1673-6338
年,卷(期):2024.40(6)