首页|基于长短期记忆网络的CO2气层识别方法

基于长短期记忆网络的CO2气层识别方法

扫码查看
CO2监测是油气开采中的关键环节,传统的CO2监测方法面临很多挑战,在人工智能逐渐兴起的当下,深度学习技术被广泛应用于地球物理测井.珠江口盆地恩平凹陷深层CO2气藏发育,传统测井方法无法准确评价储层流体.构建了基于长短期记忆网络(LSTM)的CO2气层识别模型,采用m×2正则化交叉验证优选CO2敏感测井参数,并对模型进行训练.利用该模型对珠江口盆地恩平凹陷L2井CO2气层进行识别,并与支持向量机和K近邻算法识别结果进行对比.结果表明,3种深度学习算法对CO2气层的识别效果良好,其中LSTM算法对CO2气层的识别效果最好,准确度达93.4%,为深层CO2气层识别工作提供了新思路.
CO2 Gas Layer Recognition Method Based on Long Short-Term Memory Network
CO2 monitoring is a crucial part of oil and gas extraction, and traditional methods for monitoring CO2 face many challenges. With the gradual rise of artificial intelligence, deep learning technology is widely used in geophysical logging. Due to the development of deep CO2 gas layer in Enping sag, the Pearl River Mouth basin, traditional logging methods cannot accurately evaluate reservoir fluids. CO2 gas layer recognition model based on Long Short-Term Memory Network (LSTM) is constructed, and CO2 sensitive logging parameters are optimized through m × 2 regularized cross validation to train the model. This model is used to identify the CO2 gas layer of well L2 in Enping sag, the Pearl River Mouth basin, and is compared with the recognition results of support vector machine and K nearest neighbor algorithm. The results show that the three deep learning algorithms have good recognition effects on CO2 gas layer, among which the LSTM algorithm has the best identification effect on CO2 gas layer, with an accuracy of 93.4%, providing new ideas for deep CO2 gas layer recognition work.

CO2 gas layer recognitionLong Short-Term Memory Network (LSTM)deep learningPearl River Mouth basin

何丽娜、吴文圣、王显南、张伟、张传举、宋孝雨

展开 >

中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249

中海石油(中国)有限公司深圳分公司,深圳 518054

中海油田服务股份有限公司,深圳 518054

CO2气层识别 长短期记忆网络(LSTM) 深度学习 珠江口盆地

2024

测井技术
中国石油集团测井有限公司

测井技术

CSTPCD
影响因子:0.699
ISSN:1004-1338
年,卷(期):2024.48(1)