首页|小样本下大冶湖非光学活性水质参数反演与时空变化分析

小样本下大冶湖非光学活性水质参数反演与时空变化分析

扫码查看
遥感技术为内陆湖泊水质监测提供了极大的便利,但是由于非光学活性水质参数在复杂的内陆水体生物光学环境中,很难直接找到其光学特性,导致这类参数的实测水质数据与遥感反射率之间难以用简单的回归模型拟合,尤其是在实测水质样本量较小时,传统机器学习容易出现欠拟合的现象,反演精度难以保证.针对非光学活性水质参数在反演中数据量较小、拟合困难等问题,提出了一种基于点积注意力模型的水质反演方法,通过58个水质实测数据和Sentinel-2遥感数据构建了点积注意力模型,实现大冶湖遥感水质反演.在同样的样本和影像数据下,对比了基于统计回归模型和多层感知机模型的遥感水质反演.实验表明,点积注意力模型的非光学活性水质参数浓度反演的准确性较高,总磷、总氮、高锰酸盐指数的决定系数R2分别能达到0.83,0.89,0.80.最后,将提出的模型运用到大冶湖非光学活性水质参数反演中,对该湖泊2018~2021年总磷、总氮、高锰酸盐指数3种非光学活性水质参数进行反演,统计并分析了近4年大冶湖水质参数浓度的时空变化特征,对大冶湖的营养状态进行了综合评价,为大冶湖水环境治理提供重要数据支撑.
Inversion and Spatiotemporal Variation of Non-optically Active Water Quality Parameters in Daye Lake With Small Samples
Remote sensing technology provides great convenience for monitoring water quality of inland lakes.However,it is difficult to directly find the optical characteristics of certain optically inactive water quality parameters,such as Total Phosphorus(TP),Total Nitrogen(TN)and permanganate index(CODMn).In the complex biological optical environment of inland waters,it is usually hard to fit the measured water quality data with the remote sensing reflectance of such parameters using a simple regression model.Moreover,when the size of measured water quality data sample is small,traditional machine learning methods are prone to under fitting,resulting a low accuracy of water quality inversion results.To address these problems,this paper proposed a dot product attention model for estimating water quality parameters.The model was constructed using 58 measured water quality data and the corresponding Sentinel-2 remote sensing data,in Daye Lake.To verify the accuracy and priority of the proposed model,this paper compared the results with the water quality inversion results of statistical regression model and multi-layer perceptron model under the same measured water quality data sample and image data.Results showed that the accuracy of the inversion results based on the dot product attention model were the best,with the determination coefficients R2 of TP,TN and CODMn of 0.83,0.89 and 0.80,respectively.The proposed model was also employed to estimate TP,TN and CODMn in Daye Lake from 2018-2021.These results help to explore the spatial and temporal variation characteristics of the water quality parameter concentrations in Daye Lake in the past four years and assess the water pollution situation in Daye Lake.This research is expected to provide important data support for the water environment management of Daye Lake.

water quality retrievalsnon-optically active water quality parametersmachine learningattention mechanismSentinel-2

黄振辉、杨小红、王力哲、厉芳婷、刘君、刘新龙、王玲玲

展开 >

中国地质大学(武汉)计算机学院,湖北武汉 430074

武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079

湖北省测绘工程院,湖北武汉 430074

湖北省自然资源厅,湖北武汉 430071

武汉中地数字孪生技术有限公司,湖北武汉 430074

湖北省生态环境科学研究院,湖北武汉 430072

展开 >

水质反演 非光学活性 机器学习 注意力机制 哨兵2号

国家自然科学基金青年基金湖北省自然资源厅科技资助项目国家自然科学基金联合基金项目

42001308ZRZY2022KJ03U21A2013

2024

长江流域资源与环境
中国科学院资源环境科学与技术局 中国科学院武汉文献情报中心

长江流域资源与环境

CSTPCDCSSCICHSSCD北大核心
影响因子:1.35
ISSN:1004-8227
年,卷(期):2024.33(1)
  • 40