长江流域资源与环境2024,Vol.33Issue(2) :242-253.DOI:10.11870/cjlyzyyhj202402002

长三角城市群CO2排放时空格局和影响因素

Analysis of Spatial-temporal Pattern and Influencing Factors of CO2 Emissions in the Yangtze River Delta Urban Agglomeration

朱振东 齐璇璇 贾一越 黄蕊
长江流域资源与环境2024,Vol.33Issue(2) :242-253.DOI:10.11870/cjlyzyyhj202402002

长三角城市群CO2排放时空格局和影响因素

Analysis of Spatial-temporal Pattern and Influencing Factors of CO2 Emissions in the Yangtze River Delta Urban Agglomeration

朱振东 1齐璇璇 1贾一越 1黄蕊2
扫码查看

作者信息

  • 1. 南京师范大学虚拟地理环境教育部重点实验室,江苏南京 210023
  • 2. 南京师范大学虚拟地理环境教育部重点实验室,江苏南京 210023;江苏省地理信息资源开发与利用协同创新中心,江苏南京 210023
  • 折叠

摘要

长三角城市群低碳转型对推动其他地区高质量发展具有重要引领作用.基于夜间灯光数据构建CO2排放反演模型,利用趋势分析、空间自相关分析和地理加权回归模型探究2000~2019年长三角城市群县域CO2排放的时空变化和影响因素.结果表明:长三角城市群CO2排放较高的县域分布在上海、苏州等大城市的中心区域,低排放县域主要分布在西南地区,但这些县域2011年之后呈现快速上升的态势.县级尺度CO2排放空间分布以高-高集聚和低-低集聚为主,低-低集聚区域不断减少.人口总量、人均GDP和使用外资总额对长三角城市群CO2排放的影响均为正效应.其中,人口总量对CO2排放影响程度最大.研究结果可为长三角城市群精准实施减排措施和更高质量一体化发展提供科学支撑.

Abstract

The low-carbon transformation of the Yangtze River Delta urban agglomeration plays an important leading role in promoting high-quality development in other regions.This paper built a CO2 emission inversion model based on nighttime lighting data,and used trend analysis,spatial autocorrelation analysis,and geographic weighted regression models to explore the temporal and spatial changes and the influencing factors of CO2 emissions in counties of the Yangtze River Delta urban agglomeration from 2000 to 2019.The results showed that the counties with high CO2 emissions were located in the central regions of major cities such as Shanghai and Suzhou,while the counties with low CO2 emissions were mainly located in the southwest region.However,these counties showed a rapid upward trend since 2011.The spatial distribution of CO2 emissions at the county level was dominated by high-high concentration and low-low concentration,with low-low concentration areas were in a trend of a continuous decreasing.The impacts of total population,per capita GDP,and total foreign capital use on CO2 emissions was positive.The total population had the greatest impact on CO2 emissions.The results of this paper provided scientific support for the precise implementation of emission reduction measures and higher quality integrated development of the Yangtze River Delta urban agglomeration.

关键词

夜间灯光/CO2排放/空间自相关/地理加权回归

Key words

night light/CO2 emissions/spatial autocorrelation/geographically weighted regression

引用本文复制引用

基金项目

国家自然科学基金项目(42230406)

国家自然科学基金项目(41701615)

国家重点研发计划项目(2020YFA0608601)

出版年

2024
长江流域资源与环境
中国科学院资源环境科学与技术局 中国科学院武汉文献情报中心

长江流域资源与环境

CSTPCDCSSCICHSSCD北大核心
影响因子:1.35
ISSN:1004-8227
参考文献量37
段落导航相关论文