首页|基于神经网络的复合材料光学显微图像孔隙的识别与统计研究

基于神经网络的复合材料光学显微图像孔隙的识别与统计研究

扫码查看
针对复合材料孔隙含量的光学显微图像法统计过程中出现的统计试样多、统计周期长、人工统计结果存在差异等问题,将计算机图像处理技术与神经网络算法相结合,基于复合材料孔隙人工统计方法形成计算机识别与统计算法,利用大量光学显微图像数据样本的标注与学习结果,开发了基于图像处理技术和深度学习网络技术的复合材料孔隙含量识别与统计系统.同时,为使该系统的适用性更强,开发了有监督的数据更新模块.在复合材料孔隙统计中的试验结果表明,与传统人工统计方法相比,深度学习网络算法能够更好地识别孔隙特征,孔隙统计结果的相对误差小于±10%;并在较大规模数据试验中取得了更好的效果,极大地减少了传统人工统计过程中的诸多弊端,优势更强.
Recognition and Statistical Study of Pores in Optical Micrographs of Composite Materials Based on Neural Network

composite materialsmicrographsporositystatisticneural network

陈健、肖鹏

展开 >

中国商飞上海飞机制造有限公司,上海 201324

复合材料 显微图像 孔隙率 统计 神经网络

2024

测控技术
中国航空工业集团公司北京长城航空测控技术研究所

测控技术

CSTPCD
影响因子:0.5
ISSN:1000-8829
年,卷(期):2024.43(3)
  • 14