首页|基于APSO的LSTM神经网络模型优化方法研究

基于APSO的LSTM神经网络模型优化方法研究

扫码查看
多隐含层长短期记忆神经网络(long short-term memory,LSTM)循环神经网络权值与阈值更新依赖梯度下降算法,模型收敛速度慢,网络节点的权值计算易出现局部极值,导致LSTM神经网络模型不能得到全局最优,网络模型泛化能力下降,限制LSTM循环神经网络的应用。因此,利用加速粒子群优化算法(accelerated particle swarm optimization,APSO)的优化能力,提出一种改进LSTM神经网络模型。该模型将均方根误差设计为适宜值函数,并利用APSO算法构建寻优策略,对各神经元节点间的权值进行全局优化,提升模型的泛化和预测性能。通过经典DataMarket及UCI数据集的实验结果表明,APSO-LSTM模型的预测精度较传统LSTM模型有显著提升,验证了APSO-LSTM模型的有效性和实用性。
LSTM neural network model optimization algorithm based on APSO
Due to the slow convergence speed of the model with many hidden layers in the LSTM (long short-term memory) recurrent neural network,the updating of its weights and thresholds depends on the gradient descent algorithm,which may lead to the local extremum phenomenon in the weight correction of the network nodes,resulting in the reduction of the generalization ability of the LSTM neural network model. Based on this,this paper proposes an optimized LSTM neural network model based on APSO (accelerated particle swarm optimization) algorithm (APSO-LSTM). In this model,root mean square error is designed as an appropriate value function,and APSO algorithm is used to build an optimization system to optimize the weights of each neuron node globally,so as to improve the prediction performance of the model. The experimental results on the classic DataMarket and UCI datasets show that the prediction accuracy of APSO-LSTM model is significantly improved compared with the traditional LSTM model,which verifies the effectiveness of APSO-LSTM model.

neural networkweight optimizationfitness valueAPSO-LSTM model

袁琳娜、杨良斌

展开 >

国际关系学院网络空间安全学院,北京 100091

神经网络 权值优化 适宜值 APSO-LSTM模型

国家安全高精尖学科建设科研专项

2019GA37

2024

重庆大学学报
重庆大学

重庆大学学报

CSTPCD北大核心
影响因子:0.601
ISSN:1000-582X
年,卷(期):2024.47(8)