首页|基于机器视觉的隧道裂缝检测方法研究

基于机器视觉的隧道裂缝检测方法研究

扫码查看
裂缝检测是结构安全性评估的重要途径,基于阈值分割的传统裂缝检测方法在光照不均匀、背景噪声污染严重的隧道环境下具有分割精度低,难以提取完整裂缝的缺点。针对该问题,提出一种基于机器视觉的隧道裂缝检测方法。首先,对采集到的隧道图像进行频域滤波与空域差分,以增强图像纹理特征;将经上述步骤分割后的图像通过设置面积参数Tv、饱和度参数Ts与特殊参数Tv'、T's提取背景噪声并删除,避免误检现象发生,使算法能够检测出完整的隧道裂缝图像;最后,结合本文应用场景的无突变性与发展规律性,设计轻量化裂缝连接算法连接上述步骤中断裂的裂缝,避免漏检现象的发生。实验结果表明,所提方法能在复杂隧道环境中有效提取完整裂缝,使隧道裂缝图像识别的精确率达到94%,召回率98%,尺寸精度92%,检测精度能够满足实际工程需求。
Crack detection method for tunnels based on machine vision
Crack detection is crucial for assessing structural safety.Traditional image processing methods for crack detection in tunnels often suffer from high noise levels and low accuracy due to uneven lighting and severe noise pollution.To address these challenges,this study proposes a tunnel crack detection algorithm based on machine vision.First,tunnel images are filtered in the frequency domain and differentiated in the spatial domain to enhance texture features.Then,image segmentation is performed with area parameter Tv,saturation parameter Ts and special parameters T'v and T's to remove background noise and reduce misdetections,facilitating complete crack detection.Finally,a lightweight crack-connection algorithm is designed to bridge discontinuities in crack images,based on the stability and development pattern of cracks in this application scenario.Experimental results show that the proposed method effectively extracts complete cracks,achieving an image recognition accuracy of 94%,and a recall rate of 98%,meeting the requirements of practical engineering applications.

tunnel crackmachine visioncomponent analysisimage segmentation

张振海、季坤、党建武

展开 >

兰州交通大学自动化与电气工程学院,兰州 730070

兰州交通大学甘肃省人工智能与图形图像处理工程研究中心,兰州 730070

隧道裂缝 机器视觉 成分分析 图像分割

2024

重庆大学学报
重庆大学

重庆大学学报

CSTPCD北大核心
影响因子:0.601
ISSN:1000-582X
年,卷(期):2024.47(12)