首页|基于驾驶场景与决策规则的智能汽车换道决策

基于驾驶场景与决策规则的智能汽车换道决策

扫码查看
复杂交通环境中,换道决策直接影响智能汽车自主换道效果,然而在换道决策过程中依旧存在着预测正确率低以及决策安全的问题.因此,针对这一问题,提出了基于驾驶场景和决策规则的换道决策模型.考虑换道后的交通行驶状况对换道决策的影响,引入换道后的期望速度和换道前后与前车的距离作为新的特征变量,基于特征变量与换道决策的相关性建立了换道决策规则.建立了模拟真实驾驶环境的换道场景数据集,扩充了NGSIM换道场景数据集,并对其进行了有效性验证.针对换道决策的多参数和非线性问题,提出了基于贝叶斯优化核函数的支持向量机模型,在换道场景数据集上进行测试验证.结果表明:新引入的决策特征变量对换道行为有积极作用,换道场景数据集能够模拟真实的换道场景,可进一步应用到换道决策和轨迹规划的研究中,支持向量机模型对换道行为的预测正确率达 95.40%,高于其他机器学习分类器,提高了换道行为的安全性.
Lane change decision making for intelligent vehicles based on driving scenarios and decision rules
The lane change decision directly affects the autonomous lane change of intelligent vehicles in complex traffic environments,yet current process of decision-making is afflicted with low prediction accuracy and poor safety.To address these problems,this paper proposes a lane change decision model based on driving scenarios and decision rules.First,the new decision feature variables,desired velocity after lane change and distance difference from the vehicles before and after lane change,are introduced,considering the influence of the traffic conditions of post-lane change.The lane change decision rules are made based on the correlation between the feature variables and the lane change decision,considering the human decision logic.Then,the lane change scenarios dataset simulating the real-time driving environment is built and validated,which augments the NGSIM dataset.The support vector machine model based on the Bayesian optimization kernel function is proposed for the multi-parameter and nonlinear problem of lane change decision.Finally,the model is tested and validated on the lane change scenarios dataset.Our comparison results show the newly introduced decision feature variables exert positive effects on lane change behavior and the lane change scenarios dataset simulates the real-time driving conditions,which can be further applied to the research of lane change decision-making and trajectory planning.The support vector machine achieves a prediction accuracy of 95.40%,higher than other machine learning classifiers,improving the safety of lane change behaviors.

lane change scenariosintelligent vehicleslane change decision-makingfeature extractionsupport vector machine

张昆、浦同林、张倩兮、聂枝根

展开 >

昆明理工大学 交通工程学院,昆明 650500

换道场景 智能网联汽车 换道决策 特征提取 支持向量机

国家自然科学基金项目

52262053

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(3)
  • 34