首页|流体滑环压损理论计算与仿真分析

流体滑环压损理论计算与仿真分析

扫码查看
为研究流体滑环旋转传输过程中的流道压损,对流体滑环旋转传输局部压损进行简化分析,提出流体滑环压损理论估算方法,并基于Comsol软件对流体滑环进行数值分析,研究不同流体出入口夹角及环形流道宽度对流道压损的影响规律.结果表明:流体压损理论计算相对数值仿真、试验测试结果误差在20%以内,所提出的理论计算方法可指导流体滑环压损快速评估;流体滑环压损随流体出入口夹角增加呈现先增大、后逐步减小的趋势,当流体出入口夹角为30°时,流体滑环压损最大;流体滑环压损随流道宽度系数的增加逐渐减小,当宽度系数增加至一定值时,流道压损减损效果减弱,最佳流道宽度为等截面设计宽度的0.8~1.2 倍.
Theoretical calculation and simulation analysis of pressure loss in fluid slip ring
To study the pressure loss in the runner during the rotating transmission of fluid slip ring,the local pressure loss of the fluid slip ring is simplified and the theoretical estimation method of the pressure loss of the fluid slip ring is proposed.Based on the finite element software Comsol,the numerical analysis of the fluid slip ring is made to study the effect regularity of different fluid inlet and outlet angles and the width of the annular runner on the pressure loss of the runner.Our results show the relative numerical simulation result error of theoretical calculation and experimental test of fluid pressure loss is within 20%.The theoretical calculation method proposed in this paper can guide the rapid evaluation of fluid slip ring pressure loss.The pressure loss of fluid slip ring increases at first and then decreases gradually with the increase of the angle of fluid inlet and outlet.When the angle of fluid inlet and outlet is 30,the pressure loss of fluid slip ring is the highest.The pressure loss of the fluid slip ring gradually decreases with the increase of the width coefficient of the runner.When the width coefficient increases to a certain value,the pressure loss reduction effect of the runner is weakened,and the optimal runner width is 0.8-1.2 times of the design width of the equal section.

fluid slip ringrunner pressure losswidth coefficientnumerical analysisangle of inlet and outlet

帅高鹏、王能慧、叶佳钰、吴海燕、吴海红

展开 >

中船九江海洋装备(集团)有限公司,江西 九江 332008

东南大学 仪器科学与工程学院,南京 210018

流体滑环 流道压损 宽度系数 数值分析 出入口夹角

江西省科技厅重大科技研发专项项目

20223AAE01002

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(3)
  • 15