首页|一种改进鱼鹰优化算法及其应用

一种改进鱼鹰优化算法及其应用

扫码查看
针对鱼鹰优化算法(osprey optimization algorithm,OOA)在运行时存在寻优精度和稳定性差的问题,提出了如下改进策略:首先,将SPM混沌映射融入种群的初始化阶段,提升种群多样性;其次,在勘探和开采阶段分别利用威布尔分布的长、短距离随机扰动策略更新鱼鹰的位置,可有效改善OOA的收敛精度;最后,提出一种"最优-随机均值"的变异策略,用于强化OOA迭代过程中跳出局部最优的能力.所提出的算法称为改进鱼鹰优化算法(improved osprey opti-mization algorithm,IOOA).为了验证IOOA的寻优能力,将IOOA与其他新兴智能算法分别对12个基准函数进行寻优对比实验,结果表明:IOOA的寻优成功率、收敛速度以及稳定性显著高于其他算法.此外,将所提出的IOOA应用于混合核相关向量机的超参数寻优中,进一步用于柴油机多目标性能预测.
An improved osprey optimization algorithmand its application
To address the poor accuracy and stability for Osprey Optimization Algorithm ( OOA) , this paper proposes some improvement strategies. First, SPM chaotic mapping has been integrated into the stage of population initialization to improve the population diversity. Second, Weibull's long and short distance random disturbances are integrated respectively in the exploration and mining stages to update the position of osprey, effectively improving the convergence accuracy of OOA. Finally, a mutation strategy of"optimum-random mean"is proposed to enhance the ability of algorithm to jump out of the local optimal during the iterative process. The proposed algorithm is called Improved Osprey Optimization Algorithm ( IOOA) . To verify the optimization ability of IOOA, it is compared with other emerging intelligent algorithms for the optimization of 12 benchmark functions. Our results show the success rate of optimization, convergence speed and stability of IOOA are significantly higher than those of other algorithms. In addition, the application of IOOA on the hyperparameter optimization of Hybrid Kernel Relevance Vector Machine is able to accurately predict the multi-objective performance of diesel engines.

osprey optimization algorithmSPM chaotic mappingweibull random disturbanceoptimum-random mean mutation

陈曦明、张军伟、张冉、杨波、吴学雷、刘浩、毕一白

展开 >

中国运载火箭技术研究院 北京航天发射技术研究所,北京 100076

鱼鹰优化算法 SPM混沌映射 威布尔随机扰动 最优-随机均值变异策略

国家自然科学基金项目

51605020

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(5)
  • 24